Step |
Hyp |
Ref |
Expression |
1 |
|
intssuni |
|- ( C =/= (/) -> |^| C C_ U. C ) |
2 |
1
|
3ad2ant2 |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> |^| C C_ U. C ) |
3 |
|
ssel2 |
|- ( ( C C_ ( Idl ` R ) /\ i e. C ) -> i e. ( Idl ` R ) ) |
4 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
5 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
6 |
4 5
|
idlss |
|- ( ( R e. RingOps /\ i e. ( Idl ` R ) ) -> i C_ ran ( 1st ` R ) ) |
7 |
3 6
|
sylan2 |
|- ( ( R e. RingOps /\ ( C C_ ( Idl ` R ) /\ i e. C ) ) -> i C_ ran ( 1st ` R ) ) |
8 |
7
|
anassrs |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ i e. C ) -> i C_ ran ( 1st ` R ) ) |
9 |
8
|
ralrimiva |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> A. i e. C i C_ ran ( 1st ` R ) ) |
10 |
9
|
3adant2 |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> A. i e. C i C_ ran ( 1st ` R ) ) |
11 |
|
unissb |
|- ( U. C C_ ran ( 1st ` R ) <-> A. i e. C i C_ ran ( 1st ` R ) ) |
12 |
10 11
|
sylibr |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> U. C C_ ran ( 1st ` R ) ) |
13 |
2 12
|
sstrd |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> |^| C C_ ran ( 1st ` R ) ) |
14 |
|
eqid |
|- ( GId ` ( 1st ` R ) ) = ( GId ` ( 1st ` R ) ) |
15 |
4 14
|
idl0cl |
|- ( ( R e. RingOps /\ i e. ( Idl ` R ) ) -> ( GId ` ( 1st ` R ) ) e. i ) |
16 |
3 15
|
sylan2 |
|- ( ( R e. RingOps /\ ( C C_ ( Idl ` R ) /\ i e. C ) ) -> ( GId ` ( 1st ` R ) ) e. i ) |
17 |
16
|
anassrs |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ i e. C ) -> ( GId ` ( 1st ` R ) ) e. i ) |
18 |
17
|
ralrimiva |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> A. i e. C ( GId ` ( 1st ` R ) ) e. i ) |
19 |
|
fvex |
|- ( GId ` ( 1st ` R ) ) e. _V |
20 |
19
|
elint2 |
|- ( ( GId ` ( 1st ` R ) ) e. |^| C <-> A. i e. C ( GId ` ( 1st ` R ) ) e. i ) |
21 |
18 20
|
sylibr |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( GId ` ( 1st ` R ) ) e. |^| C ) |
22 |
21
|
3adant2 |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> ( GId ` ( 1st ` R ) ) e. |^| C ) |
23 |
|
vex |
|- x e. _V |
24 |
23
|
elint2 |
|- ( x e. |^| C <-> A. i e. C x e. i ) |
25 |
|
vex |
|- y e. _V |
26 |
25
|
elint2 |
|- ( y e. |^| C <-> A. i e. C y e. i ) |
27 |
|
r19.26 |
|- ( A. i e. C ( x e. i /\ y e. i ) <-> ( A. i e. C x e. i /\ A. i e. C y e. i ) ) |
28 |
4
|
idladdcl |
|- ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ ( x e. i /\ y e. i ) ) -> ( x ( 1st ` R ) y ) e. i ) |
29 |
28
|
ex |
|- ( ( R e. RingOps /\ i e. ( Idl ` R ) ) -> ( ( x e. i /\ y e. i ) -> ( x ( 1st ` R ) y ) e. i ) ) |
30 |
3 29
|
sylan2 |
|- ( ( R e. RingOps /\ ( C C_ ( Idl ` R ) /\ i e. C ) ) -> ( ( x e. i /\ y e. i ) -> ( x ( 1st ` R ) y ) e. i ) ) |
31 |
30
|
anassrs |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ i e. C ) -> ( ( x e. i /\ y e. i ) -> ( x ( 1st ` R ) y ) e. i ) ) |
32 |
31
|
ralimdva |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( A. i e. C ( x e. i /\ y e. i ) -> A. i e. C ( x ( 1st ` R ) y ) e. i ) ) |
33 |
|
ovex |
|- ( x ( 1st ` R ) y ) e. _V |
34 |
33
|
elint2 |
|- ( ( x ( 1st ` R ) y ) e. |^| C <-> A. i e. C ( x ( 1st ` R ) y ) e. i ) |
35 |
32 34
|
syl6ibr |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( A. i e. C ( x e. i /\ y e. i ) -> ( x ( 1st ` R ) y ) e. |^| C ) ) |
36 |
27 35
|
syl5bir |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( ( A. i e. C x e. i /\ A. i e. C y e. i ) -> ( x ( 1st ` R ) y ) e. |^| C ) ) |
37 |
36
|
expdimp |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) -> ( A. i e. C y e. i -> ( x ( 1st ` R ) y ) e. |^| C ) ) |
38 |
26 37
|
syl5bi |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) -> ( y e. |^| C -> ( x ( 1st ` R ) y ) e. |^| C ) ) |
39 |
38
|
ralrimiv |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) -> A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C ) |
40 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
41 |
4 40 5
|
idllmulcl |
|- ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ ( x e. i /\ z e. ran ( 1st ` R ) ) ) -> ( z ( 2nd ` R ) x ) e. i ) |
42 |
41
|
anass1rs |
|- ( ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ x e. i ) -> ( z ( 2nd ` R ) x ) e. i ) |
43 |
42
|
ex |
|- ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( x e. i -> ( z ( 2nd ` R ) x ) e. i ) ) |
44 |
43
|
an32s |
|- ( ( ( R e. RingOps /\ z e. ran ( 1st ` R ) ) /\ i e. ( Idl ` R ) ) -> ( x e. i -> ( z ( 2nd ` R ) x ) e. i ) ) |
45 |
3 44
|
sylan2 |
|- ( ( ( R e. RingOps /\ z e. ran ( 1st ` R ) ) /\ ( C C_ ( Idl ` R ) /\ i e. C ) ) -> ( x e. i -> ( z ( 2nd ` R ) x ) e. i ) ) |
46 |
45
|
an4s |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ ( z e. ran ( 1st ` R ) /\ i e. C ) ) -> ( x e. i -> ( z ( 2nd ` R ) x ) e. i ) ) |
47 |
46
|
anassrs |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ i e. C ) -> ( x e. i -> ( z ( 2nd ` R ) x ) e. i ) ) |
48 |
47
|
ralimdva |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( A. i e. C x e. i -> A. i e. C ( z ( 2nd ` R ) x ) e. i ) ) |
49 |
48
|
imp |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ A. i e. C x e. i ) -> A. i e. C ( z ( 2nd ` R ) x ) e. i ) |
50 |
|
ovex |
|- ( z ( 2nd ` R ) x ) e. _V |
51 |
50
|
elint2 |
|- ( ( z ( 2nd ` R ) x ) e. |^| C <-> A. i e. C ( z ( 2nd ` R ) x ) e. i ) |
52 |
49 51
|
sylibr |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ A. i e. C x e. i ) -> ( z ( 2nd ` R ) x ) e. |^| C ) |
53 |
4 40 5
|
idlrmulcl |
|- ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ ( x e. i /\ z e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) z ) e. i ) |
54 |
53
|
anass1rs |
|- ( ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ x e. i ) -> ( x ( 2nd ` R ) z ) e. i ) |
55 |
54
|
ex |
|- ( ( ( R e. RingOps /\ i e. ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( x e. i -> ( x ( 2nd ` R ) z ) e. i ) ) |
56 |
55
|
an32s |
|- ( ( ( R e. RingOps /\ z e. ran ( 1st ` R ) ) /\ i e. ( Idl ` R ) ) -> ( x e. i -> ( x ( 2nd ` R ) z ) e. i ) ) |
57 |
3 56
|
sylan2 |
|- ( ( ( R e. RingOps /\ z e. ran ( 1st ` R ) ) /\ ( C C_ ( Idl ` R ) /\ i e. C ) ) -> ( x e. i -> ( x ( 2nd ` R ) z ) e. i ) ) |
58 |
57
|
an4s |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ ( z e. ran ( 1st ` R ) /\ i e. C ) ) -> ( x e. i -> ( x ( 2nd ` R ) z ) e. i ) ) |
59 |
58
|
anassrs |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ i e. C ) -> ( x e. i -> ( x ( 2nd ` R ) z ) e. i ) ) |
60 |
59
|
ralimdva |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( A. i e. C x e. i -> A. i e. C ( x ( 2nd ` R ) z ) e. i ) ) |
61 |
60
|
imp |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ A. i e. C x e. i ) -> A. i e. C ( x ( 2nd ` R ) z ) e. i ) |
62 |
|
ovex |
|- ( x ( 2nd ` R ) z ) e. _V |
63 |
62
|
elint2 |
|- ( ( x ( 2nd ` R ) z ) e. |^| C <-> A. i e. C ( x ( 2nd ` R ) z ) e. i ) |
64 |
61 63
|
sylibr |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ A. i e. C x e. i ) -> ( x ( 2nd ` R ) z ) e. |^| C ) |
65 |
52 64
|
jca |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ z e. ran ( 1st ` R ) ) /\ A. i e. C x e. i ) -> ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) |
66 |
65
|
an32s |
|- ( ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) /\ z e. ran ( 1st ` R ) ) -> ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) |
67 |
66
|
ralrimiva |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) |
68 |
39 67
|
jca |
|- ( ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) /\ A. i e. C x e. i ) -> ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) |
69 |
68
|
ex |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( A. i e. C x e. i -> ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) ) |
70 |
24 69
|
syl5bi |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> ( x e. |^| C -> ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) ) |
71 |
70
|
ralrimiv |
|- ( ( R e. RingOps /\ C C_ ( Idl ` R ) ) -> A. x e. |^| C ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) |
72 |
71
|
3adant2 |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> A. x e. |^| C ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) |
73 |
4 40 5 14
|
isidl |
|- ( R e. RingOps -> ( |^| C e. ( Idl ` R ) <-> ( |^| C C_ ran ( 1st ` R ) /\ ( GId ` ( 1st ` R ) ) e. |^| C /\ A. x e. |^| C ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) ) ) |
74 |
73
|
3ad2ant1 |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> ( |^| C e. ( Idl ` R ) <-> ( |^| C C_ ran ( 1st ` R ) /\ ( GId ` ( 1st ` R ) ) e. |^| C /\ A. x e. |^| C ( A. y e. |^| C ( x ( 1st ` R ) y ) e. |^| C /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. |^| C /\ ( x ( 2nd ` R ) z ) e. |^| C ) ) ) ) ) |
75 |
13 22 72 74
|
mpbir3and |
|- ( ( R e. RingOps /\ C =/= (/) /\ C C_ ( Idl ` R ) ) -> |^| C e. ( Idl ` R ) ) |