Step |
Hyp |
Ref |
Expression |
1 |
|
intprg |
|- ( ( I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> |^| { I , J } = ( I i^i J ) ) |
2 |
1
|
3adant1 |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> |^| { I , J } = ( I i^i J ) ) |
3 |
|
prnzg |
|- ( I e. ( Idl ` R ) -> { I , J } =/= (/) ) |
4 |
3
|
adantr |
|- ( ( I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> { I , J } =/= (/) ) |
5 |
|
prssi |
|- ( ( I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> { I , J } C_ ( Idl ` R ) ) |
6 |
4 5
|
jca |
|- ( ( I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> ( { I , J } =/= (/) /\ { I , J } C_ ( Idl ` R ) ) ) |
7 |
|
intidl |
|- ( ( R e. RingOps /\ { I , J } =/= (/) /\ { I , J } C_ ( Idl ` R ) ) -> |^| { I , J } e. ( Idl ` R ) ) |
8 |
7
|
3expb |
|- ( ( R e. RingOps /\ ( { I , J } =/= (/) /\ { I , J } C_ ( Idl ` R ) ) ) -> |^| { I , J } e. ( Idl ` R ) ) |
9 |
6 8
|
sylan2 |
|- ( ( R e. RingOps /\ ( I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) ) -> |^| { I , J } e. ( Idl ` R ) ) |
10 |
9
|
3impb |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> |^| { I , J } e. ( Idl ` R ) ) |
11 |
2 10
|
eqeltrrd |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ J e. ( Idl ` R ) ) -> ( I i^i J ) e. ( Idl ` R ) ) |