Metamath Proof Explorer


Theorem inidl

Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion inidl R RingOps I Idl R J Idl R I J Idl R

Proof

Step Hyp Ref Expression
1 intprg I Idl R J Idl R I J = I J
2 1 3adant1 R RingOps I Idl R J Idl R I J = I J
3 prnzg I Idl R I J
4 3 adantr I Idl R J Idl R I J
5 prssi I Idl R J Idl R I J Idl R
6 4 5 jca I Idl R J Idl R I J I J Idl R
7 intidl R RingOps I J I J Idl R I J Idl R
8 7 3expb R RingOps I J I J Idl R I J Idl R
9 6 8 sylan2 R RingOps I Idl R J Idl R I J Idl R
10 9 3impb R RingOps I Idl R J Idl R I J Idl R
11 2 10 eqeltrrd R RingOps I Idl R J Idl R I J Idl R