Metamath Proof Explorer


Theorem unichnidl

Description: The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion unichnidl RRingOpsCCIdlRiCjCijjiCIdlR

Proof

Step Hyp Ref Expression
1 dfss3 CIdlRiCiIdlR
2 eqid 1stR=1stR
3 eqid ran1stR=ran1stR
4 2 3 idlss RRingOpsiIdlRiran1stR
5 4 ex RRingOpsiIdlRiran1stR
6 5 ralimdv RRingOpsiCiIdlRiCiran1stR
7 6 imp RRingOpsiCiIdlRiCiran1stR
8 1 7 sylan2b RRingOpsCIdlRiCiran1stR
9 unissb Cran1stRiCiran1stR
10 8 9 sylibr RRingOpsCIdlRCran1stR
11 10 3ad2antr2 RRingOpsCCIdlRiCjCijjiCran1stR
12 eqid GId1stR=GId1stR
13 2 12 idl0cl RRingOpsiIdlRGId1stRi
14 13 ex RRingOpsiIdlRGId1stRi
15 14 ralimdv RRingOpsiCiIdlRiCGId1stRi
16 15 imp RRingOpsiCiIdlRiCGId1stRi
17 1 16 sylan2b RRingOpsCIdlRiCGId1stRi
18 r19.2z CiCGId1stRiiCGId1stRi
19 17 18 sylan2 CRRingOpsCIdlRiCGId1stRi
20 19 an12s RRingOpsCCIdlRiCGId1stRi
21 eluni2 GId1stRCiCGId1stRi
22 20 21 sylibr RRingOpsCCIdlRGId1stRC
23 22 3adantr3 RRingOpsCCIdlRiCjCijjiGId1stRC
24 eluni2 xCkCxk
25 sseq1 i=kijkj
26 sseq2 i=kjijk
27 25 26 orbi12d i=kijjikjjk
28 27 ralbidv i=kjCijjijCkjjk
29 28 rspcv kCiCjCijjijCkjjk
30 29 adantr kCxkiCjCijjijCkjjk
31 30 ad2antlr RRingOpskCxkCIdlRiCjCijjijCkjjk
32 31 imp RRingOpskCxkCIdlRiCjCijjijCkjjk
33 eluni2 yCiCyi
34 sseq2 j=ikjki
35 sseq1 j=ijkik
36 34 35 orbi12d j=ikjjkkiik
37 36 rspcv iCjCkjjkkiik
38 37 ad2antrl RRingOpskCxkCIdlRiCyijCkjjkkiik
39 38 imp RRingOpskCxkCIdlRiCyijCkjjkkiik
40 ssel2 kixkxi
41 40 ancoms xkkixi
42 41 adantll kCxkkixi
43 ssel2 CIdlRiCiIdlR
44 2 idladdcl RRingOpsiIdlRxiyix1stRyi
45 44 ancom2s RRingOpsiIdlRyixix1stRyi
46 45 expr RRingOpsiIdlRyixix1stRyi
47 46 an32s RRingOpsyiiIdlRxix1stRyi
48 43 47 sylan2 RRingOpsyiCIdlRiCxix1stRyi
49 48 an42s RRingOpsCIdlRiCyixix1stRyi
50 49 anasss RRingOpsCIdlRiCyixix1stRyi
51 50 imp RRingOpsCIdlRiCyixix1stRyi
52 simprl CIdlRiCyiiC
53 52 ad2antlr RRingOpsCIdlRiCyixiiC
54 elunii x1stRyiiCx1stRyC
55 51 53 54 syl2anc RRingOpsCIdlRiCyixix1stRyC
56 42 55 sylan2 RRingOpsCIdlRiCyikCxkkix1stRyC
57 56 expr RRingOpsCIdlRiCyikCxkkix1stRyC
58 57 an32s RRingOpskCxkCIdlRiCyikix1stRyC
59 58 anassrs RRingOpskCxkCIdlRiCyikix1stRyC
60 59 imp RRingOpskCxkCIdlRiCyikix1stRyC
61 ssel2 ikyiyk
62 61 ancoms yiikyk
63 62 adantll iCyiikyk
64 ssel2 CIdlRkCkIdlR
65 2 idladdcl RRingOpskIdlRxkykx1stRyk
66 65 expr RRingOpskIdlRxkykx1stRyk
67 66 an32s RRingOpsxkkIdlRykx1stRyk
68 64 67 sylan2 RRingOpsxkCIdlRkCykx1stRyk
69 68 an42s RRingOpsCIdlRkCxkykx1stRyk
70 69 an32s RRingOpskCxkCIdlRykx1stRyk
71 70 imp RRingOpskCxkCIdlRykx1stRyk
72 simprl RRingOpskCxkkC
73 72 ad2antrr RRingOpskCxkCIdlRykkC
74 elunii x1stRykkCx1stRyC
75 71 73 74 syl2anc RRingOpskCxkCIdlRykx1stRyC
76 63 75 sylan2 RRingOpskCxkCIdlRiCyiikx1stRyC
77 76 anassrs RRingOpskCxkCIdlRiCyiikx1stRyC
78 60 77 jaodan RRingOpskCxkCIdlRiCyikiikx1stRyC
79 39 78 syldan RRingOpskCxkCIdlRiCyijCkjjkx1stRyC
80 79 an32s RRingOpskCxkCIdlRjCkjjkiCyix1stRyC
81 80 rexlimdvaa RRingOpskCxkCIdlRjCkjjkiCyix1stRyC
82 33 81 biimtrid RRingOpskCxkCIdlRjCkjjkyCx1stRyC
83 82 ralrimiv RRingOpskCxkCIdlRjCkjjkyCx1stRyC
84 32 83 syldan RRingOpskCxkCIdlRiCjCijjiyCx1stRyC
85 84 anasss RRingOpskCxkCIdlRiCjCijjiyCx1stRyC
86 85 3adantr1 RRingOpskCxkCCIdlRiCjCijjiyCx1stRyC
87 86 an32s RRingOpsCCIdlRiCjCijjikCxkyCx1stRyC
88 eqid 2ndR=2ndR
89 2 88 3 idllmulcl RRingOpskIdlRxkzran1stRz2ndRxk
90 89 exp43 RRingOpskIdlRxkzran1stRz2ndRxk
91 90 com23 RRingOpsxkkIdlRzran1stRz2ndRxk
92 91 imp41 RRingOpsxkkIdlRzran1stRz2ndRxk
93 64 92 sylanl2 RRingOpsxkCIdlRkCzran1stRz2ndRxk
94 simplrr RRingOpsxkCIdlRkCzran1stRkC
95 elunii z2ndRxkkCz2ndRxC
96 93 94 95 syl2anc RRingOpsxkCIdlRkCzran1stRz2ndRxC
97 2 88 3 idlrmulcl RRingOpskIdlRxkzran1stRx2ndRzk
98 97 exp43 RRingOpskIdlRxkzran1stRx2ndRzk
99 98 com23 RRingOpsxkkIdlRzran1stRx2ndRzk
100 99 imp41 RRingOpsxkkIdlRzran1stRx2ndRzk
101 64 100 sylanl2 RRingOpsxkCIdlRkCzran1stRx2ndRzk
102 elunii x2ndRzkkCx2ndRzC
103 101 94 102 syl2anc RRingOpsxkCIdlRkCzran1stRx2ndRzC
104 96 103 jca RRingOpsxkCIdlRkCzran1stRz2ndRxCx2ndRzC
105 104 ralrimiva RRingOpsxkCIdlRkCzran1stRz2ndRxCx2ndRzC
106 105 an42s RRingOpsCIdlRkCxkzran1stRz2ndRxCx2ndRzC
107 106 an32s RRingOpskCxkCIdlRzran1stRz2ndRxCx2ndRzC
108 107 3ad2antr2 RRingOpskCxkCCIdlRiCjCijjizran1stRz2ndRxCx2ndRzC
109 108 an32s RRingOpsCCIdlRiCjCijjikCxkzran1stRz2ndRxCx2ndRzC
110 87 109 jca RRingOpsCCIdlRiCjCijjikCxkyCx1stRyCzran1stRz2ndRxCx2ndRzC
111 110 rexlimdvaa RRingOpsCCIdlRiCjCijjikCxkyCx1stRyCzran1stRz2ndRxCx2ndRzC
112 24 111 biimtrid RRingOpsCCIdlRiCjCijjixCyCx1stRyCzran1stRz2ndRxCx2ndRzC
113 112 ralrimiv RRingOpsCCIdlRiCjCijjixCyCx1stRyCzran1stRz2ndRxCx2ndRzC
114 2 88 3 12 isidl RRingOpsCIdlRCran1stRGId1stRCxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
115 114 adantr RRingOpsCCIdlRiCjCijjiCIdlRCran1stRGId1stRCxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
116 11 23 113 115 mpbir3and RRingOpsCCIdlRiCjCijjiCIdlR