| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfss3 |
⊢ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ↔ ∀ 𝑖 ∈ 𝐶 𝑖 ∈ ( Idl ‘ 𝑅 ) ) |
| 2 |
|
eqid |
⊢ ( 1st ‘ 𝑅 ) = ( 1st ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ran ( 1st ‘ 𝑅 ) = ran ( 1st ‘ 𝑅 ) |
| 4 |
2 3
|
idlss |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 5 |
4
|
ex |
⊢ ( 𝑅 ∈ RingOps → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) → 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) ) |
| 6 |
5
|
ralimdv |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑖 ∈ 𝐶 𝑖 ∈ ( Idl ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝐶 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑖 ∈ 𝐶 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖 ∈ 𝐶 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 8 |
1 7
|
sylan2b |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖 ∈ 𝐶 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 9 |
|
unissb |
⊢ ( ∪ 𝐶 ⊆ ran ( 1st ‘ 𝑅 ) ↔ ∀ 𝑖 ∈ 𝐶 𝑖 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∪ 𝐶 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 11 |
10
|
3ad2antr2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∪ 𝐶 ⊆ ran ( 1st ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( GId ‘ ( 1st ‘ 𝑅 ) ) = ( GId ‘ ( 1st ‘ 𝑅 ) ) |
| 13 |
2 12
|
idl0cl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 14 |
13
|
ex |
⊢ ( 𝑅 ∈ RingOps → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) → ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) ) |
| 15 |
14
|
ralimdv |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑖 ∈ 𝐶 𝑖 ∈ ( Idl ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑖 ∈ 𝐶 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 17 |
1 16
|
sylan2b |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 18 |
|
r19.2z |
⊢ ( ( 𝐶 ≠ ∅ ∧ ∀ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) → ∃ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 19 |
17 18
|
sylan2 |
⊢ ( ( 𝐶 ≠ ∅ ∧ ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ) → ∃ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 20 |
19
|
an12s |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ) → ∃ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 21 |
|
eluni2 |
⊢ ( ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ ∪ 𝐶 ↔ ∃ 𝑖 ∈ 𝐶 ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ 𝑖 ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ) → ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ ∪ 𝐶 ) |
| 23 |
22
|
3adantr3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ ∪ 𝐶 ) |
| 24 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐶 ↔ ∃ 𝑘 ∈ 𝐶 𝑥 ∈ 𝑘 ) |
| 25 |
|
sseq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗 ) ) |
| 26 |
|
sseq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑗 ⊆ 𝑖 ↔ 𝑗 ⊆ 𝑘 ) ) |
| 27 |
25 26
|
orbi12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ↔ ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ↔ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ) |
| 29 |
28
|
rspcv |
⊢ ( 𝑘 ∈ 𝐶 → ( ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) → ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) → ( ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) → ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ) |
| 31 |
30
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) → ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) → ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) |
| 33 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐶 ↔ ∃ 𝑖 ∈ 𝐶 𝑦 ∈ 𝑖 ) |
| 34 |
|
sseq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑘 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑖 ) ) |
| 35 |
|
sseq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ⊆ 𝑘 ↔ 𝑖 ⊆ 𝑘 ) ) |
| 36 |
34 35
|
orbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ↔ ( 𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘 ) ) ) |
| 37 |
36
|
rspcv |
⊢ ( 𝑖 ∈ 𝐶 → ( ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) → ( 𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘 ) ) ) |
| 38 |
37
|
ad2antrl |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) → ( ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) → ( 𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘 ) ) ) |
| 39 |
38
|
imp |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) → ( 𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘 ) ) |
| 40 |
|
ssel2 |
⊢ ( ( 𝑘 ⊆ 𝑖 ∧ 𝑥 ∈ 𝑘 ) → 𝑥 ∈ 𝑖 ) |
| 41 |
40
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝑘 ∧ 𝑘 ⊆ 𝑖 ) → 𝑥 ∈ 𝑖 ) |
| 42 |
41
|
adantll |
⊢ ( ( ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ∧ 𝑘 ⊆ 𝑖 ) → 𝑥 ∈ 𝑖 ) |
| 43 |
|
ssel2 |
⊢ ( ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖 ∈ 𝐶 ) → 𝑖 ∈ ( Idl ‘ 𝑅 ) ) |
| 44 |
2
|
idladdcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝑖 ∧ 𝑦 ∈ 𝑖 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) |
| 45 |
44
|
ancom2s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑦 ∈ 𝑖 ∧ 𝑥 ∈ 𝑖 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) |
| 46 |
45
|
expr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑖 ) → ( 𝑥 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) ) |
| 47 |
46
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑦 ∈ 𝑖 ) ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑥 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) ) |
| 48 |
43 47
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑦 ∈ 𝑖 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖 ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) ) |
| 49 |
48
|
an42s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) → ( 𝑥 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) ) |
| 50 |
49
|
anasss |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) → ( 𝑥 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) ) |
| 51 |
50
|
imp |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) ∧ 𝑥 ∈ 𝑖 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ) |
| 52 |
|
simprl |
⊢ ( ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) → 𝑖 ∈ 𝐶 ) |
| 53 |
52
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) ∧ 𝑥 ∈ 𝑖 ) → 𝑖 ∈ 𝐶 ) |
| 54 |
|
elunii |
⊢ ( ( ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑖 ∧ 𝑖 ∈ 𝐶 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 55 |
51 53 54
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) ∧ 𝑥 ∈ 𝑖 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 56 |
42 55
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) ∧ ( ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ∧ 𝑘 ⊆ 𝑖 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 57 |
56
|
expr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ( 𝑘 ⊆ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) ) |
| 58 |
57
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ) → ( 𝑘 ⊆ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) ) |
| 59 |
58
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) → ( 𝑘 ⊆ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ∧ 𝑘 ⊆ 𝑖 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 61 |
|
ssel2 |
⊢ ( ( 𝑖 ⊆ 𝑘 ∧ 𝑦 ∈ 𝑖 ) → 𝑦 ∈ 𝑘 ) |
| 62 |
61
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝑖 ∧ 𝑖 ⊆ 𝑘 ) → 𝑦 ∈ 𝑘 ) |
| 63 |
62
|
adantll |
⊢ ( ( ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑘 ) → 𝑦 ∈ 𝑘 ) |
| 64 |
|
ssel2 |
⊢ ( ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ ( Idl ‘ 𝑅 ) ) |
| 65 |
2
|
idladdcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑘 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) |
| 66 |
65
|
expr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝑘 ) → ( 𝑦 ∈ 𝑘 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) ) |
| 67 |
66
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑦 ∈ 𝑘 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) ) |
| 68 |
64 67
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) → ( 𝑦 ∈ 𝑘 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) ) |
| 69 |
68
|
an42s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ( 𝑦 ∈ 𝑘 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) ) |
| 70 |
69
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( 𝑦 ∈ 𝑘 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑘 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ) |
| 72 |
|
simprl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → 𝑘 ∈ 𝐶 ) |
| 73 |
72
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑘 ) → 𝑘 ∈ 𝐶 ) |
| 74 |
|
elunii |
⊢ ( ( ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 75 |
71 73 74
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑘 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 76 |
63 75
|
sylan2 |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ∧ 𝑖 ⊆ 𝑘 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 77 |
76
|
anassrs |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ∧ 𝑖 ⊆ 𝑘 ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 78 |
60 77
|
jaodan |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ∧ ( 𝑘 ⊆ 𝑖 ∨ 𝑖 ⊆ 𝑘 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 79 |
39 78
|
syldan |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 80 |
79
|
an32s |
⊢ ( ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) ∧ ( 𝑖 ∈ 𝐶 ∧ 𝑦 ∈ 𝑖 ) ) → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 81 |
80
|
rexlimdvaa |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) → ( ∃ 𝑖 ∈ 𝐶 𝑦 ∈ 𝑖 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) ) |
| 82 |
33 81
|
biimtrid |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) → ( 𝑦 ∈ ∪ 𝐶 → ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) ) |
| 83 |
82
|
ralrimiv |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ 𝐶 ( 𝑘 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑘 ) ) → ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 84 |
32 83
|
syldan |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) → ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 85 |
84
|
anasss |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 86 |
85
|
3adantr1 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 87 |
86
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ) |
| 88 |
|
eqid |
⊢ ( 2nd ‘ 𝑅 ) = ( 2nd ‘ 𝑅 ) |
| 89 |
2 88 3
|
idllmulcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝑘 ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ) |
| 90 |
89
|
exp43 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑘 ∈ ( Idl ‘ 𝑅 ) → ( 𝑥 ∈ 𝑘 → ( 𝑧 ∈ ran ( 1st ‘ 𝑅 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ) ) ) ) |
| 91 |
90
|
com23 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑥 ∈ 𝑘 → ( 𝑘 ∈ ( Idl ‘ 𝑅 ) → ( 𝑧 ∈ ran ( 1st ‘ 𝑅 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ) ) ) ) |
| 92 |
91
|
imp41 |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ) |
| 93 |
64 92
|
sylanl2 |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ) |
| 94 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → 𝑘 ∈ 𝐶 ) |
| 95 |
|
elunii |
⊢ ( ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ) |
| 96 |
93 94 95
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ) |
| 97 |
2 88 3
|
idlrmulcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝑘 ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ) |
| 98 |
97
|
exp43 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑘 ∈ ( Idl ‘ 𝑅 ) → ( 𝑥 ∈ 𝑘 → ( 𝑧 ∈ ran ( 1st ‘ 𝑅 ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ) ) ) ) |
| 99 |
98
|
com23 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑥 ∈ 𝑘 → ( 𝑘 ∈ ( Idl ‘ 𝑅 ) → ( 𝑧 ∈ ran ( 1st ‘ 𝑅 ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ) ) ) ) |
| 100 |
99
|
imp41 |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ 𝑘 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ) |
| 101 |
64 100
|
sylanl2 |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ) |
| 102 |
|
elunii |
⊢ ( ( ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑘 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) |
| 103 |
101 94 102
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) |
| 104 |
96 103
|
jca |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) ∧ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 105 |
104
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑘 ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐶 ) ) → ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 106 |
105
|
an42s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 107 |
106
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 108 |
107
|
3ad2antr2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 109 |
108
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) |
| 110 |
87 109
|
jca |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑥 ∈ 𝑘 ) ) → ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) |
| 111 |
110
|
rexlimdvaa |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ 𝐶 𝑥 ∈ 𝑘 → ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) ) |
| 112 |
24 111
|
biimtrid |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ( 𝑥 ∈ ∪ 𝐶 → ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) ) |
| 113 |
112
|
ralrimiv |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∀ 𝑥 ∈ ∪ 𝐶 ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) |
| 114 |
2 88 3 12
|
isidl |
⊢ ( 𝑅 ∈ RingOps → ( ∪ 𝐶 ∈ ( Idl ‘ 𝑅 ) ↔ ( ∪ 𝐶 ⊆ ran ( 1st ‘ 𝑅 ) ∧ ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ ∪ 𝐶 ∧ ∀ 𝑥 ∈ ∪ 𝐶 ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) ) ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ( ∪ 𝐶 ∈ ( Idl ‘ 𝑅 ) ↔ ( ∪ 𝐶 ⊆ ran ( 1st ‘ 𝑅 ) ∧ ( GId ‘ ( 1st ‘ 𝑅 ) ) ∈ ∪ 𝐶 ∧ ∀ 𝑥 ∈ ∪ 𝐶 ( ∀ 𝑦 ∈ ∪ 𝐶 ( 𝑥 ( 1st ‘ 𝑅 ) 𝑦 ) ∈ ∪ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st ‘ 𝑅 ) ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ ∪ 𝐶 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ ∪ 𝐶 ) ) ) ) ) |
| 116 |
11 23 113 115
|
mpbir3and |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐶 ∀ 𝑗 ∈ 𝐶 ( 𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖 ) ) ) → ∪ 𝐶 ∈ ( Idl ‘ 𝑅 ) ) |