Metamath Proof Explorer


Theorem idlss

Description: An ideal of R is a subset of R . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlss.1 𝐺 = ( 1st𝑅 )
idlss.2 𝑋 = ran 𝐺
Assertion idlss ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → 𝐼𝑋 )

Proof

Step Hyp Ref Expression
1 idlss.1 𝐺 = ( 1st𝑅 )
2 idlss.2 𝑋 = ran 𝐺
3 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
4 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
5 1 3 2 4 isidl ( 𝑅 ∈ RingOps → ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝐼𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐼 ) ) ) ) )
6 5 biimpa ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝐼𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐼 ) ) ) )
7 6 simp1d ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → 𝐼𝑋 )