Metamath Proof Explorer


Theorem idlss

Description: An ideal of R is a subset of R . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlss.1
|- G = ( 1st ` R )
idlss.2
|- X = ran G
Assertion idlss
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X )

Proof

Step Hyp Ref Expression
1 idlss.1
 |-  G = ( 1st ` R )
2 idlss.2
 |-  X = ran G
3 eqid
 |-  ( 2nd ` R ) = ( 2nd ` R )
4 eqid
 |-  ( GId ` G ) = ( GId ` G )
5 1 3 2 4 isidl
 |-  ( R e. RingOps -> ( I e. ( Idl ` R ) <-> ( I C_ X /\ ( GId ` G ) e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) )
6 5 biimpa
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( I C_ X /\ ( GId ` G ) e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) )
7 6 simp1d
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X )