Step |
Hyp |
Ref |
Expression |
1 |
|
idlss.1 |
|- G = ( 1st ` R ) |
2 |
|
idlss.2 |
|- X = ran G |
3 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
4 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
5 |
1 3 2 4
|
isidl |
|- ( R e. RingOps -> ( I e. ( Idl ` R ) <-> ( I C_ X /\ ( GId ` G ) e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) ) |
6 |
5
|
biimpa |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( I C_ X /\ ( GId ` G ) e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) |
7 |
6
|
simp1d |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X ) |