Description: An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idlss.1 | |- G = ( 1st ` R ) |
|
| idlss.2 | |- X = ran G |
||
| Assertion | idlcl | |- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> A e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlss.1 | |- G = ( 1st ` R ) |
|
| 2 | idlss.2 | |- X = ran G |
|
| 3 | 1 2 | idlss | |- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X ) |
| 4 | 3 | sselda | |- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> A e. X ) |