Metamath Proof Explorer


Theorem idlcl

Description: An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses idlss.1
|- G = ( 1st ` R )
idlss.2
|- X = ran G
Assertion idlcl
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> A e. X )

Proof

Step Hyp Ref Expression
1 idlss.1
 |-  G = ( 1st ` R )
2 idlss.2
 |-  X = ran G
3 1 2 idlss
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X )
4 3 sselda
 |-  ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ A e. I ) -> A e. X )