Step |
Hyp |
Ref |
Expression |
1 |
|
idllmulcl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
idllmulcl.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
idllmulcl.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
5 |
1 2 3 4
|
isidl |
⊢ ( 𝑅 ∈ RingOps → ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝐼 ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝐼 ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) ) |
7 |
6
|
simp3d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) → ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) |
10 |
9
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 𝐺 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐻 𝑥 ) ∈ 𝐼 ∧ ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) ) → ∀ 𝑥 ∈ 𝐼 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) |
12 |
7 11
|
syl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ∀ 𝑥 ∈ 𝐼 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑧 ) = ( 𝐴 𝐻 𝑧 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 ↔ ( 𝐴 𝐻 𝑧 ) ∈ 𝐼 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 𝐻 𝑧 ) = ( 𝐴 𝐻 𝐵 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 𝐻 𝑧 ) ∈ 𝐼 ↔ ( 𝐴 𝐻 𝐵 ) ∈ 𝐼 ) ) |
17 |
14 16
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐻 𝑧 ) ∈ 𝐼 → ( 𝐴 𝐻 𝐵 ) ∈ 𝐼 ) ) |
18 |
12 17
|
mpan9 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝐼 ) |