Metamath Proof Explorer


Theorem intidl

Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion intidl RRingOpsCCIdlRCIdlR

Proof

Step Hyp Ref Expression
1 intssuni CCC
2 1 3ad2ant2 RRingOpsCCIdlRCC
3 ssel2 CIdlRiCiIdlR
4 eqid 1stR=1stR
5 eqid ran1stR=ran1stR
6 4 5 idlss RRingOpsiIdlRiran1stR
7 3 6 sylan2 RRingOpsCIdlRiCiran1stR
8 7 anassrs RRingOpsCIdlRiCiran1stR
9 8 ralrimiva RRingOpsCIdlRiCiran1stR
10 9 3adant2 RRingOpsCCIdlRiCiran1stR
11 unissb Cran1stRiCiran1stR
12 10 11 sylibr RRingOpsCCIdlRCran1stR
13 2 12 sstrd RRingOpsCCIdlRCran1stR
14 eqid GId1stR=GId1stR
15 4 14 idl0cl RRingOpsiIdlRGId1stRi
16 3 15 sylan2 RRingOpsCIdlRiCGId1stRi
17 16 anassrs RRingOpsCIdlRiCGId1stRi
18 17 ralrimiva RRingOpsCIdlRiCGId1stRi
19 fvex GId1stRV
20 19 elint2 GId1stRCiCGId1stRi
21 18 20 sylibr RRingOpsCIdlRGId1stRC
22 21 3adant2 RRingOpsCCIdlRGId1stRC
23 vex xV
24 23 elint2 xCiCxi
25 vex yV
26 25 elint2 yCiCyi
27 r19.26 iCxiyiiCxiiCyi
28 4 idladdcl RRingOpsiIdlRxiyix1stRyi
29 28 ex RRingOpsiIdlRxiyix1stRyi
30 3 29 sylan2 RRingOpsCIdlRiCxiyix1stRyi
31 30 anassrs RRingOpsCIdlRiCxiyix1stRyi
32 31 ralimdva RRingOpsCIdlRiCxiyiiCx1stRyi
33 ovex x1stRyV
34 33 elint2 x1stRyCiCx1stRyi
35 32 34 syl6ibr RRingOpsCIdlRiCxiyix1stRyC
36 27 35 biimtrrid RRingOpsCIdlRiCxiiCyix1stRyC
37 36 expdimp RRingOpsCIdlRiCxiiCyix1stRyC
38 26 37 biimtrid RRingOpsCIdlRiCxiyCx1stRyC
39 38 ralrimiv RRingOpsCIdlRiCxiyCx1stRyC
40 eqid 2ndR=2ndR
41 4 40 5 idllmulcl RRingOpsiIdlRxizran1stRz2ndRxi
42 41 anass1rs RRingOpsiIdlRzran1stRxiz2ndRxi
43 42 ex RRingOpsiIdlRzran1stRxiz2ndRxi
44 43 an32s RRingOpszran1stRiIdlRxiz2ndRxi
45 3 44 sylan2 RRingOpszran1stRCIdlRiCxiz2ndRxi
46 45 an4s RRingOpsCIdlRzran1stRiCxiz2ndRxi
47 46 anassrs RRingOpsCIdlRzran1stRiCxiz2ndRxi
48 47 ralimdva RRingOpsCIdlRzran1stRiCxiiCz2ndRxi
49 48 imp RRingOpsCIdlRzran1stRiCxiiCz2ndRxi
50 ovex z2ndRxV
51 50 elint2 z2ndRxCiCz2ndRxi
52 49 51 sylibr RRingOpsCIdlRzran1stRiCxiz2ndRxC
53 4 40 5 idlrmulcl RRingOpsiIdlRxizran1stRx2ndRzi
54 53 anass1rs RRingOpsiIdlRzran1stRxix2ndRzi
55 54 ex RRingOpsiIdlRzran1stRxix2ndRzi
56 55 an32s RRingOpszran1stRiIdlRxix2ndRzi
57 3 56 sylan2 RRingOpszran1stRCIdlRiCxix2ndRzi
58 57 an4s RRingOpsCIdlRzran1stRiCxix2ndRzi
59 58 anassrs RRingOpsCIdlRzran1stRiCxix2ndRzi
60 59 ralimdva RRingOpsCIdlRzran1stRiCxiiCx2ndRzi
61 60 imp RRingOpsCIdlRzran1stRiCxiiCx2ndRzi
62 ovex x2ndRzV
63 62 elint2 x2ndRzCiCx2ndRzi
64 61 63 sylibr RRingOpsCIdlRzran1stRiCxix2ndRzC
65 52 64 jca RRingOpsCIdlRzran1stRiCxiz2ndRxCx2ndRzC
66 65 an32s RRingOpsCIdlRiCxizran1stRz2ndRxCx2ndRzC
67 66 ralrimiva RRingOpsCIdlRiCxizran1stRz2ndRxCx2ndRzC
68 39 67 jca RRingOpsCIdlRiCxiyCx1stRyCzran1stRz2ndRxCx2ndRzC
69 68 ex RRingOpsCIdlRiCxiyCx1stRyCzran1stRz2ndRxCx2ndRzC
70 24 69 biimtrid RRingOpsCIdlRxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
71 70 ralrimiv RRingOpsCIdlRxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
72 71 3adant2 RRingOpsCCIdlRxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
73 4 40 5 14 isidl RRingOpsCIdlRCran1stRGId1stRCxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
74 73 3ad2ant1 RRingOpsCCIdlRCIdlRCran1stRGId1stRCxCyCx1stRyCzran1stRz2ndRxCx2ndRzC
75 13 22 72 74 mpbir3and RRingOpsCCIdlRCIdlR