Metamath Proof Explorer


Theorem intidl

Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion intidl R RingOps C C Idl R C Idl R

Proof

Step Hyp Ref Expression
1 intssuni C C C
2 1 3ad2ant2 R RingOps C C Idl R C C
3 ssel2 C Idl R i C i Idl R
4 eqid 1 st R = 1 st R
5 eqid ran 1 st R = ran 1 st R
6 4 5 idlss R RingOps i Idl R i ran 1 st R
7 3 6 sylan2 R RingOps C Idl R i C i ran 1 st R
8 7 anassrs R RingOps C Idl R i C i ran 1 st R
9 8 ralrimiva R RingOps C Idl R i C i ran 1 st R
10 9 3adant2 R RingOps C C Idl R i C i ran 1 st R
11 unissb C ran 1 st R i C i ran 1 st R
12 10 11 sylibr R RingOps C C Idl R C ran 1 st R
13 2 12 sstrd R RingOps C C Idl R C ran 1 st R
14 eqid GId 1 st R = GId 1 st R
15 4 14 idl0cl R RingOps i Idl R GId 1 st R i
16 3 15 sylan2 R RingOps C Idl R i C GId 1 st R i
17 16 anassrs R RingOps C Idl R i C GId 1 st R i
18 17 ralrimiva R RingOps C Idl R i C GId 1 st R i
19 fvex GId 1 st R V
20 19 elint2 GId 1 st R C i C GId 1 st R i
21 18 20 sylibr R RingOps C Idl R GId 1 st R C
22 21 3adant2 R RingOps C C Idl R GId 1 st R C
23 vex x V
24 23 elint2 x C i C x i
25 vex y V
26 25 elint2 y C i C y i
27 r19.26 i C x i y i i C x i i C y i
28 4 idladdcl R RingOps i Idl R x i y i x 1 st R y i
29 28 ex R RingOps i Idl R x i y i x 1 st R y i
30 3 29 sylan2 R RingOps C Idl R i C x i y i x 1 st R y i
31 30 anassrs R RingOps C Idl R i C x i y i x 1 st R y i
32 31 ralimdva R RingOps C Idl R i C x i y i i C x 1 st R y i
33 ovex x 1 st R y V
34 33 elint2 x 1 st R y C i C x 1 st R y i
35 32 34 syl6ibr R RingOps C Idl R i C x i y i x 1 st R y C
36 27 35 syl5bir R RingOps C Idl R i C x i i C y i x 1 st R y C
37 36 expdimp R RingOps C Idl R i C x i i C y i x 1 st R y C
38 26 37 syl5bi R RingOps C Idl R i C x i y C x 1 st R y C
39 38 ralrimiv R RingOps C Idl R i C x i y C x 1 st R y C
40 eqid 2 nd R = 2 nd R
41 4 40 5 idllmulcl R RingOps i Idl R x i z ran 1 st R z 2 nd R x i
42 41 anass1rs R RingOps i Idl R z ran 1 st R x i z 2 nd R x i
43 42 ex R RingOps i Idl R z ran 1 st R x i z 2 nd R x i
44 43 an32s R RingOps z ran 1 st R i Idl R x i z 2 nd R x i
45 3 44 sylan2 R RingOps z ran 1 st R C Idl R i C x i z 2 nd R x i
46 45 an4s R RingOps C Idl R z ran 1 st R i C x i z 2 nd R x i
47 46 anassrs R RingOps C Idl R z ran 1 st R i C x i z 2 nd R x i
48 47 ralimdva R RingOps C Idl R z ran 1 st R i C x i i C z 2 nd R x i
49 48 imp R RingOps C Idl R z ran 1 st R i C x i i C z 2 nd R x i
50 ovex z 2 nd R x V
51 50 elint2 z 2 nd R x C i C z 2 nd R x i
52 49 51 sylibr R RingOps C Idl R z ran 1 st R i C x i z 2 nd R x C
53 4 40 5 idlrmulcl R RingOps i Idl R x i z ran 1 st R x 2 nd R z i
54 53 anass1rs R RingOps i Idl R z ran 1 st R x i x 2 nd R z i
55 54 ex R RingOps i Idl R z ran 1 st R x i x 2 nd R z i
56 55 an32s R RingOps z ran 1 st R i Idl R x i x 2 nd R z i
57 3 56 sylan2 R RingOps z ran 1 st R C Idl R i C x i x 2 nd R z i
58 57 an4s R RingOps C Idl R z ran 1 st R i C x i x 2 nd R z i
59 58 anassrs R RingOps C Idl R z ran 1 st R i C x i x 2 nd R z i
60 59 ralimdva R RingOps C Idl R z ran 1 st R i C x i i C x 2 nd R z i
61 60 imp R RingOps C Idl R z ran 1 st R i C x i i C x 2 nd R z i
62 ovex x 2 nd R z V
63 62 elint2 x 2 nd R z C i C x 2 nd R z i
64 61 63 sylibr R RingOps C Idl R z ran 1 st R i C x i x 2 nd R z C
65 52 64 jca R RingOps C Idl R z ran 1 st R i C x i z 2 nd R x C x 2 nd R z C
66 65 an32s R RingOps C Idl R i C x i z ran 1 st R z 2 nd R x C x 2 nd R z C
67 66 ralrimiva R RingOps C Idl R i C x i z ran 1 st R z 2 nd R x C x 2 nd R z C
68 39 67 jca R RingOps C Idl R i C x i y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
69 68 ex R RingOps C Idl R i C x i y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
70 24 69 syl5bi R RingOps C Idl R x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
71 70 ralrimiv R RingOps C Idl R x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
72 71 3adant2 R RingOps C C Idl R x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
73 4 40 5 14 isidl R RingOps C Idl R C ran 1 st R GId 1 st R C x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
74 73 3ad2ant1 R RingOps C C Idl R C Idl R C ran 1 st R GId 1 st R C x C y C x 1 st R y C z ran 1 st R z 2 nd R x C x 2 nd R z C
75 13 22 72 74 mpbir3and R RingOps C C Idl R C Idl R