Metamath Proof Explorer


Theorem intprg

Description: The intersection of a pair is the intersection of its members. Closed form of intpr . Theorem 71 of Suppes p. 42. (Contributed by FL, 27-Apr-2008)

Ref Expression
Assertion intprg
|- ( ( A e. V /\ B e. W ) -> |^| { A , B } = ( A i^i B ) )

Proof

Step Hyp Ref Expression
1 preq1
 |-  ( x = A -> { x , y } = { A , y } )
2 1 inteqd
 |-  ( x = A -> |^| { x , y } = |^| { A , y } )
3 ineq1
 |-  ( x = A -> ( x i^i y ) = ( A i^i y ) )
4 2 3 eqeq12d
 |-  ( x = A -> ( |^| { x , y } = ( x i^i y ) <-> |^| { A , y } = ( A i^i y ) ) )
5 preq2
 |-  ( y = B -> { A , y } = { A , B } )
6 5 inteqd
 |-  ( y = B -> |^| { A , y } = |^| { A , B } )
7 ineq2
 |-  ( y = B -> ( A i^i y ) = ( A i^i B ) )
8 6 7 eqeq12d
 |-  ( y = B -> ( |^| { A , y } = ( A i^i y ) <-> |^| { A , B } = ( A i^i B ) ) )
9 vex
 |-  x e. _V
10 vex
 |-  y e. _V
11 9 10 intpr
 |-  |^| { x , y } = ( x i^i y )
12 4 8 11 vtocl2g
 |-  ( ( A e. V /\ B e. W ) -> |^| { A , B } = ( A i^i B ) )