| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
rngidl.2 |
⊢ 𝑋 = ran 𝐺 |
| 3 |
|
ssidd |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋 ) |
| 4 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
| 5 |
1 2 4
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → ( GId ‘ 𝐺 ) ∈ 𝑋 ) |
| 6 |
1 2
|
rngogcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
| 7 |
6
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
| 8 |
7
|
ralrimiva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
| 9 |
|
eqid |
⊢ ( 2nd ‘ 𝑅 ) = ( 2nd ‘ 𝑅 ) |
| 10 |
1 9 2
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ) |
| 11 |
10
|
3com23 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ) |
| 12 |
1 9 2
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
| 13 |
11 12
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
| 14 |
13
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
| 16 |
8 15
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) |
| 18 |
1 9 2 4
|
isidl |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝑋 ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) ) ) |
| 19 |
3 5 17 18
|
mpbir3and |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) ) |