Step |
Hyp |
Ref |
Expression |
1 |
|
rngidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
rngidl.2 |
⊢ 𝑋 = ran 𝐺 |
3 |
|
ssidd |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋 ) |
4 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
5 |
1 2 4
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → ( GId ‘ 𝐺 ) ∈ 𝑋 ) |
6 |
1 2
|
rngogcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
8 |
7
|
ralrimiva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ) |
9 |
|
eqid |
⊢ ( 2nd ‘ 𝑅 ) = ( 2nd ‘ 𝑅 ) |
10 |
1 9 2
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ) |
11 |
10
|
3com23 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ) |
12 |
1 9 2
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
13 |
11 12
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) |
16 |
8 15
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) |
17 |
16
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) |
18 |
1 9 2 4
|
isidl |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝑋 ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) ) ) |
19 |
3 5 17 18
|
mpbir3and |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) ) |