Metamath Proof Explorer


Theorem rngoidl

Description: A ring R is an R ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses rngidl.1 𝐺 = ( 1st𝑅 )
rngidl.2 𝑋 = ran 𝐺
Assertion rngoidl ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rngidl.1 𝐺 = ( 1st𝑅 )
2 rngidl.2 𝑋 = ran 𝐺
3 ssidd ( 𝑅 ∈ RingOps → 𝑋𝑋 )
4 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
5 1 2 4 rngo0cl ( 𝑅 ∈ RingOps → ( GId ‘ 𝐺 ) ∈ 𝑋 )
6 1 2 rngogcl ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 )
7 6 3expa ( ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋 ) ∧ 𝑦𝑋 ) → ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 )
8 7 ralrimiva ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋 ) → ∀ 𝑦𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 )
9 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
10 1 9 2 rngocl ( ( 𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋 ) → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 )
11 10 3com23 ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋 ) → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 )
12 1 9 2 rngocl ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋 ) → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 )
13 11 12 jca ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋 ) → ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) )
14 13 3expa ( ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋 ) ∧ 𝑧𝑋 ) → ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) )
15 14 ralrimiva ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋 ) → ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) )
16 8 15 jca ( ( 𝑅 ∈ RingOps ∧ 𝑥𝑋 ) → ( ∀ 𝑦𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) ) )
17 16 ralrimiva ( 𝑅 ∈ RingOps → ∀ 𝑥𝑋 ( ∀ 𝑦𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) ) )
18 1 9 2 4 isidl ( 𝑅 ∈ RingOps → ( 𝑋 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝑋𝑋 ∧ ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑥𝑋 ( ∀ 𝑦𝑋 ( 𝑥 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑧𝑋 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑋 ) ) ) ) )
19 3 5 17 18 mpbir3and ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) )