| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidl.1 |
|- G = ( 1st ` R ) |
| 2 |
|
rngidl.2 |
|- X = ran G |
| 3 |
|
ssidd |
|- ( R e. RingOps -> X C_ X ) |
| 4 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
| 5 |
1 2 4
|
rngo0cl |
|- ( R e. RingOps -> ( GId ` G ) e. X ) |
| 6 |
1 2
|
rngogcl |
|- ( ( R e. RingOps /\ x e. X /\ y e. X ) -> ( x G y ) e. X ) |
| 7 |
6
|
3expa |
|- ( ( ( R e. RingOps /\ x e. X ) /\ y e. X ) -> ( x G y ) e. X ) |
| 8 |
7
|
ralrimiva |
|- ( ( R e. RingOps /\ x e. X ) -> A. y e. X ( x G y ) e. X ) |
| 9 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 10 |
1 9 2
|
rngocl |
|- ( ( R e. RingOps /\ z e. X /\ x e. X ) -> ( z ( 2nd ` R ) x ) e. X ) |
| 11 |
10
|
3com23 |
|- ( ( R e. RingOps /\ x e. X /\ z e. X ) -> ( z ( 2nd ` R ) x ) e. X ) |
| 12 |
1 9 2
|
rngocl |
|- ( ( R e. RingOps /\ x e. X /\ z e. X ) -> ( x ( 2nd ` R ) z ) e. X ) |
| 13 |
11 12
|
jca |
|- ( ( R e. RingOps /\ x e. X /\ z e. X ) -> ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) |
| 14 |
13
|
3expa |
|- ( ( ( R e. RingOps /\ x e. X ) /\ z e. X ) -> ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) |
| 15 |
14
|
ralrimiva |
|- ( ( R e. RingOps /\ x e. X ) -> A. z e. X ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) |
| 16 |
8 15
|
jca |
|- ( ( R e. RingOps /\ x e. X ) -> ( A. y e. X ( x G y ) e. X /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) ) |
| 17 |
16
|
ralrimiva |
|- ( R e. RingOps -> A. x e. X ( A. y e. X ( x G y ) e. X /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) ) |
| 18 |
1 9 2 4
|
isidl |
|- ( R e. RingOps -> ( X e. ( Idl ` R ) <-> ( X C_ X /\ ( GId ` G ) e. X /\ A. x e. X ( A. y e. X ( x G y ) e. X /\ A. z e. X ( ( z ( 2nd ` R ) x ) e. X /\ ( x ( 2nd ` R ) z ) e. X ) ) ) ) ) |
| 19 |
3 5 17 18
|
mpbir3and |
|- ( R e. RingOps -> X e. ( Idl ` R ) ) |