Metamath Proof Explorer


Definition df-drngo

Description: Define the class of all division rings (sometimes called skew fields). A division ring is a unital ring where every element except the additive identity has a multiplicative inverse. (Contributed by NM, 4-Apr-2009) (New usage is discouraged.)

Ref Expression
Assertion df-drngo DivRingOps=gh|ghRingOpshrangGIdg×rangGIdgGrpOp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdrng classDivRingOps
1 vg setvarg
2 vh setvarh
3 1 cv setvarg
4 2 cv setvarh
5 3 4 cop classgh
6 crngo classRingOps
7 5 6 wcel wffghRingOps
8 3 crn classrang
9 cgi classGId
10 3 9 cfv classGIdg
11 10 csn classGIdg
12 8 11 cdif classrangGIdg
13 12 12 cxp classrangGIdg×rangGIdg
14 4 13 cres classhrangGIdg×rangGIdg
15 cgr classGrpOp
16 14 15 wcel wffhrangGIdg×rangGIdgGrpOp
17 7 16 wa wffghRingOpshrangGIdg×rangGIdgGrpOp
18 17 1 2 copab classgh|ghRingOpshrangGIdg×rangGIdgGrpOp
19 0 18 wceq wffDivRingOps=gh|ghRingOpshrangGIdg×rangGIdgGrpOp