Metamath Proof Explorer


Theorem isdivrngo

Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)

Ref Expression
Assertion isdivrngo H A G H DivRingOps G H RingOps H ran G GId G × ran G GId G GrpOp

Proof

Step Hyp Ref Expression
1 df-br G DivRingOps H G H DivRingOps
2 df-drngo DivRingOps = x y | x y RingOps y ran x GId x × ran x GId x GrpOp
3 2 relopabiv Rel DivRingOps
4 3 brrelex1i G DivRingOps H G V
5 1 4 sylbir G H DivRingOps G V
6 5 anim1i G H DivRingOps H A G V H A
7 6 ancoms H A G H DivRingOps G V H A
8 rngoablo2 G H RingOps G AbelOp
9 elex G AbelOp G V
10 8 9 syl G H RingOps G V
11 10 ad2antrl H A G H RingOps H ran G GId G × ran G GId G GrpOp G V
12 simpl H A G H RingOps H ran G GId G × ran G GId G GrpOp H A
13 11 12 jca H A G H RingOps H ran G GId G × ran G GId G GrpOp G V H A
14 df-drngo DivRingOps = g h | g h RingOps h ran g GId g × ran g GId g GrpOp
15 14 eleq2i G H DivRingOps G H g h | g h RingOps h ran g GId g × ran g GId g GrpOp
16 opeq1 g = G g h = G h
17 16 eleq1d g = G g h RingOps G h RingOps
18 rneq g = G ran g = ran G
19 fveq2 g = G GId g = GId G
20 19 sneqd g = G GId g = GId G
21 18 20 difeq12d g = G ran g GId g = ran G GId G
22 21 sqxpeqd g = G ran g GId g × ran g GId g = ran G GId G × ran G GId G
23 22 reseq2d g = G h ran g GId g × ran g GId g = h ran G GId G × ran G GId G
24 23 eleq1d g = G h ran g GId g × ran g GId g GrpOp h ran G GId G × ran G GId G GrpOp
25 17 24 anbi12d g = G g h RingOps h ran g GId g × ran g GId g GrpOp G h RingOps h ran G GId G × ran G GId G GrpOp
26 opeq2 h = H G h = G H
27 26 eleq1d h = H G h RingOps G H RingOps
28 reseq1 h = H h ran G GId G × ran G GId G = H ran G GId G × ran G GId G
29 28 eleq1d h = H h ran G GId G × ran G GId G GrpOp H ran G GId G × ran G GId G GrpOp
30 27 29 anbi12d h = H G h RingOps h ran G GId G × ran G GId G GrpOp G H RingOps H ran G GId G × ran G GId G GrpOp
31 25 30 opelopabg G V H A G H g h | g h RingOps h ran g GId g × ran g GId g GrpOp G H RingOps H ran G GId G × ran G GId G GrpOp
32 15 31 syl5bb G V H A G H DivRingOps G H RingOps H ran G GId G × ran G GId G GrpOp
33 7 13 32 pm5.21nd H A G H DivRingOps G H RingOps H ran G GId G × ran G GId G GrpOp