Description: The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ring0cl.1 | |- G = ( 1st ` R ) |
|
ring0cl.2 | |- X = ran G |
||
ring0cl.3 | |- Z = ( GId ` G ) |
||
Assertion | rngo0rid | |- ( ( R e. RingOps /\ A e. X ) -> ( A G Z ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.1 | |- G = ( 1st ` R ) |
|
2 | ring0cl.2 | |- X = ran G |
|
3 | ring0cl.3 | |- Z = ( GId ` G ) |
|
4 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
5 | 2 3 | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G Z ) = A ) |
6 | 4 5 | sylan | |- ( ( R e. RingOps /\ A e. X ) -> ( A G Z ) = A ) |