Description: The additive identity of a ring is a left identity element. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring0cl.1 | |- G = ( 1st ` R ) |
|
| ring0cl.2 | |- X = ran G |
||
| ring0cl.3 | |- Z = ( GId ` G ) |
||
| Assertion | rngo0lid | |- ( ( R e. RingOps /\ A e. X ) -> ( Z G A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring0cl.1 | |- G = ( 1st ` R ) |
|
| 2 | ring0cl.2 | |- X = ran G |
|
| 3 | ring0cl.3 | |- Z = ( GId ` G ) |
|
| 4 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 5 | 2 3 | grpolid | |- ( ( G e. GrpOp /\ A e. X ) -> ( Z G A ) = A ) |
| 6 | 4 5 | sylan | |- ( ( R e. RingOps /\ A e. X ) -> ( Z G A ) = A ) |