| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringlz.1 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 2 |
|
ringlz.2 |
⊢ 𝑋 = ran 𝐺 |
| 3 |
|
ringlz.3 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 4 |
|
ringlz.4 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 5 |
3
|
rngogrpo |
⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
| 6 |
2 1
|
grpoidcl |
⊢ ( 𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋 ) |
| 7 |
2 1
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 8 |
5 6 7
|
syl2anc2 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 10 |
9
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑍 𝐺 𝑍 ) ) = ( 𝐴 𝐻 𝑍 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 12 |
3 2 1
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ 𝑋 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 14 |
11 13 13
|
3jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) ) |
| 15 |
3 4 2
|
rngodi |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝑍 𝐺 𝑍 ) ) = ( ( 𝐴 𝐻 𝑍 ) 𝐺 ( 𝐴 𝐻 𝑍 ) ) ) |
| 16 |
14 15
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑍 𝐺 𝑍 ) ) = ( ( 𝐴 𝐻 𝑍 ) 𝐺 ( 𝐴 𝐻 𝑍 ) ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 18 |
3 4 2
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ) |
| 19 |
13 18
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ) |
| 20 |
2 1
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ) → ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) = ( 𝐴 𝐻 𝑍 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ) → ( 𝐴 𝐻 𝑍 ) = ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) ) |
| 22 |
17 19 21
|
syl2anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 𝑍 ) = ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) ) |
| 23 |
10 16 22
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝑍 ) 𝐺 ( 𝐴 𝐻 𝑍 ) ) = ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) ) |
| 24 |
2
|
grporcan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝑍 ) ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐻 𝑍 ) 𝐺 ( 𝐴 𝐻 𝑍 ) ) = ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) ↔ ( 𝐴 𝐻 𝑍 ) = 𝑍 ) ) |
| 25 |
17 19 13 19 24
|
syl13anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐴 𝐻 𝑍 ) 𝐺 ( 𝐴 𝐻 𝑍 ) ) = ( 𝑍 𝐺 ( 𝐴 𝐻 𝑍 ) ) ↔ ( 𝐴 𝐻 𝑍 ) = 𝑍 ) ) |
| 26 |
23 25
|
mpbid |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐻 𝑍 ) = 𝑍 ) |