Metamath Proof Explorer


Theorem isdmn2

Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isdmn2 ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) )

Proof

Step Hyp Ref Expression
1 isdmn ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2 ) )
2 prrngorngo ( 𝑅 ∈ PrRing → 𝑅 ∈ RingOps )
3 iscrngo ( 𝑅 ∈ CRingOps ↔ ( 𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2 ) )
4 3 baibr ( 𝑅 ∈ RingOps → ( 𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps ) )
5 2 4 syl ( 𝑅 ∈ PrRing → ( 𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps ) )
6 5 pm5.32i ( ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2 ) ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) )
7 1 6 bitri ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) )