Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | isdmn2 | ⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdmn | ⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2 ) ) | |
2 | prrngorngo | ⊢ ( 𝑅 ∈ PrRing → 𝑅 ∈ RingOps ) | |
3 | iscrngo | ⊢ ( 𝑅 ∈ CRingOps ↔ ( 𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2 ) ) | |
4 | 3 | baibr | ⊢ ( 𝑅 ∈ RingOps → ( 𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps ) ) |
5 | 2 4 | syl | ⊢ ( 𝑅 ∈ PrRing → ( 𝑅 ∈ Com2 ↔ 𝑅 ∈ CRingOps ) ) |
6 | 5 | pm5.32i | ⊢ ( ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2 ) ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ) |
7 | 1 6 | bitri | ⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ) |