Metamath Proof Explorer


Theorem dmncrng

Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmncrng ( 𝑅 ∈ Dmn → 𝑅 ∈ CRingOps )

Proof

Step Hyp Ref Expression
1 isdmn2 ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) )
2 1 simprbi ( 𝑅 ∈ Dmn → 𝑅 ∈ CRingOps )