Metamath Proof Explorer


Theorem dmncrng

Description: A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmncrng RDmnRCRingOps

Proof

Step Hyp Ref Expression
1 isdmn2 RDmnRPrRingRCRingOps
2 1 simprbi RDmnRCRingOps