Metamath Proof Explorer


Theorem dmnrngo

Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmnrngo RDmnRRingOps

Proof

Step Hyp Ref Expression
1 dmncrng RDmnRCRingOps
2 crngorngo RCRingOpsRRingOps
3 1 2 syl RDmnRRingOps