Metamath Proof Explorer


Theorem dmnrngo

Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmnrngo R Dmn R RingOps

Proof

Step Hyp Ref Expression
1 dmncrng R Dmn R CRingOps
2 crngorngo R CRingOps R RingOps
3 1 2 syl R Dmn R RingOps