Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Prime rings and integral domains
flddmn
Next ⟩
Ideal generators
Metamath Proof Explorer
Ascii
Unicode
Theorem
flddmn
Description:
A field is a domain.
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Assertion
flddmn
⊢
K
∈
Fld
→
K
∈
Dmn
Proof
Step
Hyp
Ref
Expression
1
divrngpr
⊢
K
∈
DivRingOps
→
K
∈
PrRing
2
1
anim1i
⊢
K
∈
DivRingOps
∧
K
∈
CRingOps
→
K
∈
PrRing
∧
K
∈
CRingOps
3
isfld2
⊢
K
∈
Fld
↔
K
∈
DivRingOps
∧
K
∈
CRingOps
4
isdmn2
⊢
K
∈
Dmn
↔
K
∈
PrRing
∧
K
∈
CRingOps
5
2
3
4
3imtr4i
⊢
K
∈
Fld
→
K
∈
Dmn