Metamath Proof Explorer


Theorem flddmn

Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion flddmn K Fld K Dmn

Proof

Step Hyp Ref Expression
1 divrngpr K DivRingOps K PrRing
2 1 anim1i K DivRingOps K CRingOps K PrRing K CRingOps
3 isfld2 K Fld K DivRingOps K CRingOps
4 isdmn2 K Dmn K PrRing K CRingOps
5 2 3 4 3imtr4i K Fld K Dmn