Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | flddmn | |- ( K e. Fld -> K e. Dmn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngpr | |- ( K e. DivRingOps -> K e. PrRing ) |
|
2 | 1 | anim1i | |- ( ( K e. DivRingOps /\ K e. CRingOps ) -> ( K e. PrRing /\ K e. CRingOps ) ) |
3 | isfld2 | |- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |
|
4 | isdmn2 | |- ( K e. Dmn <-> ( K e. PrRing /\ K e. CRingOps ) ) |
|
5 | 2 3 4 | 3imtr4i | |- ( K e. Fld -> K e. Dmn ) |