Metamath Proof Explorer


Theorem isdmn2

Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isdmn2
|- ( R e. Dmn <-> ( R e. PrRing /\ R e. CRingOps ) )

Proof

Step Hyp Ref Expression
1 isdmn
 |-  ( R e. Dmn <-> ( R e. PrRing /\ R e. Com2 ) )
2 prrngorngo
 |-  ( R e. PrRing -> R e. RingOps )
3 iscrngo
 |-  ( R e. CRingOps <-> ( R e. RingOps /\ R e. Com2 ) )
4 3 baibr
 |-  ( R e. RingOps -> ( R e. Com2 <-> R e. CRingOps ) )
5 2 4 syl
 |-  ( R e. PrRing -> ( R e. Com2 <-> R e. CRingOps ) )
6 5 pm5.32i
 |-  ( ( R e. PrRing /\ R e. Com2 ) <-> ( R e. PrRing /\ R e. CRingOps ) )
7 1 6 bitri
 |-  ( R e. Dmn <-> ( R e. PrRing /\ R e. CRingOps ) )