Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | isdmn2 | |- ( R e. Dmn <-> ( R e. PrRing /\ R e. CRingOps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdmn | |- ( R e. Dmn <-> ( R e. PrRing /\ R e. Com2 ) ) |
|
2 | prrngorngo | |- ( R e. PrRing -> R e. RingOps ) |
|
3 | iscrngo | |- ( R e. CRingOps <-> ( R e. RingOps /\ R e. Com2 ) ) |
|
4 | 3 | baibr | |- ( R e. RingOps -> ( R e. Com2 <-> R e. CRingOps ) ) |
5 | 2 4 | syl | |- ( R e. PrRing -> ( R e. Com2 <-> R e. CRingOps ) ) |
6 | 5 | pm5.32i | |- ( ( R e. PrRing /\ R e. Com2 ) <-> ( R e. PrRing /\ R e. CRingOps ) ) |
7 | 1 6 | bitri | |- ( R e. Dmn <-> ( R e. PrRing /\ R e. CRingOps ) ) |