Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prrngorngo | |- ( R e. PrRing -> R e. RingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 2 | eqid | |- ( GId ` ( 1st ` R ) ) = ( GId ` ( 1st ` R ) ) |
|
| 3 | 1 2 | isprrngo | |- ( R e. PrRing <-> ( R e. RingOps /\ { ( GId ` ( 1st ` R ) ) } e. ( PrIdl ` R ) ) ) |
| 4 | 3 | simplbi | |- ( R e. PrRing -> R e. RingOps ) |