Step |
Hyp |
Ref |
Expression |
1 |
|
isprrng.1 |
|- G = ( 1st ` R ) |
2 |
|
isprrng.2 |
|- Z = ( GId ` G ) |
3 |
|
fveq2 |
|- ( r = R -> ( 1st ` r ) = ( 1st ` R ) ) |
4 |
3 1
|
eqtr4di |
|- ( r = R -> ( 1st ` r ) = G ) |
5 |
4
|
fveq2d |
|- ( r = R -> ( GId ` ( 1st ` r ) ) = ( GId ` G ) ) |
6 |
5 2
|
eqtr4di |
|- ( r = R -> ( GId ` ( 1st ` r ) ) = Z ) |
7 |
6
|
sneqd |
|- ( r = R -> { ( GId ` ( 1st ` r ) ) } = { Z } ) |
8 |
|
fveq2 |
|- ( r = R -> ( PrIdl ` r ) = ( PrIdl ` R ) ) |
9 |
7 8
|
eleq12d |
|- ( r = R -> ( { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) <-> { Z } e. ( PrIdl ` R ) ) ) |
10 |
|
df-prrngo |
|- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |
11 |
9 10
|
elrab2 |
|- ( R e. PrRing <-> ( R e. RingOps /\ { Z } e. ( PrIdl ` R ) ) ) |