Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Prime rings and integral domains
isprrngo
Next ⟩
prrngorngo
Metamath Proof Explorer
Ascii
Unicode
Theorem
isprrngo
Description:
The predicate "is a prime ring".
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Hypotheses
isprrng.1
⊢
G
=
1
st
⁡
R
isprrng.2
⊢
Z
=
GId
⁡
G
Assertion
isprrngo
⊢
R
∈
PrRing
↔
R
∈
RingOps
∧
Z
∈
PrIdl
⁡
R
Proof
Step
Hyp
Ref
Expression
1
isprrng.1
⊢
G
=
1
st
⁡
R
2
isprrng.2
⊢
Z
=
GId
⁡
G
3
fveq2
⊢
r
=
R
→
1
st
⁡
r
=
1
st
⁡
R
4
3
1
eqtr4di
⊢
r
=
R
→
1
st
⁡
r
=
G
5
4
fveq2d
⊢
r
=
R
→
GId
⁡
1
st
⁡
r
=
GId
⁡
G
6
5
2
eqtr4di
⊢
r
=
R
→
GId
⁡
1
st
⁡
r
=
Z
7
6
sneqd
⊢
r
=
R
→
GId
⁡
1
st
⁡
r
=
Z
8
fveq2
⊢
r
=
R
→
PrIdl
⁡
r
=
PrIdl
⁡
R
9
7
8
eleq12d
⊢
r
=
R
→
GId
⁡
1
st
⁡
r
∈
PrIdl
⁡
r
↔
Z
∈
PrIdl
⁡
R
10
df-prrngo
⊢
PrRing
=
r
∈
RingOps
|
GId
⁡
1
st
⁡
r
∈
PrIdl
⁡
r
11
9
10
elrab2
⊢
R
∈
PrRing
↔
R
∈
RingOps
∧
Z
∈
PrIdl
⁡
R