Metamath Proof Explorer


Theorem isprrngo

Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses isprrng.1 G = 1 st R
isprrng.2 Z = GId G
Assertion isprrngo R PrRing R RingOps Z PrIdl R

Proof

Step Hyp Ref Expression
1 isprrng.1 G = 1 st R
2 isprrng.2 Z = GId G
3 fveq2 r = R 1 st r = 1 st R
4 3 1 eqtr4di r = R 1 st r = G
5 4 fveq2d r = R GId 1 st r = GId G
6 5 2 eqtr4di r = R GId 1 st r = Z
7 6 sneqd r = R GId 1 st r = Z
8 fveq2 r = R PrIdl r = PrIdl R
9 7 8 eleq12d r = R GId 1 st r PrIdl r Z PrIdl R
10 df-prrngo PrRing = r RingOps | GId 1 st r PrIdl r
11 9 10 elrab2 R PrRing R RingOps Z PrIdl R