Metamath Proof Explorer


Definition df-prrngo

Description: Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-prrngo PrRing = r RingOps | GId 1 st r PrIdl r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprrng class PrRing
1 vr setvar r
2 crngo class RingOps
3 cgi class GId
4 c1st class 1 st
5 1 cv setvar r
6 5 4 cfv class 1 st r
7 6 3 cfv class GId 1 st r
8 7 csn class GId 1 st r
9 cpridl class PrIdl
10 5 9 cfv class PrIdl r
11 8 10 wcel wff GId 1 st r PrIdl r
12 11 1 2 crab class r RingOps | GId 1 st r PrIdl r
13 0 12 wceq wff PrRing = r RingOps | GId 1 st r PrIdl r