Description: Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-prrngo | |- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cprrng | |- PrRing |
|
| 1 | vr | |- r |
|
| 2 | crngo | |- RingOps |
|
| 3 | cgi | |- GId |
|
| 4 | c1st | |- 1st |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( 1st ` r ) |
| 7 | 6 3 | cfv | |- ( GId ` ( 1st ` r ) ) |
| 8 | 7 | csn | |- { ( GId ` ( 1st ` r ) ) } |
| 9 | cpridl | |- PrIdl |
|
| 10 | 5 9 | cfv | |- ( PrIdl ` r ) |
| 11 | 8 10 | wcel | |- { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) |
| 12 | 11 1 2 | crab | |- { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |
| 13 | 0 12 | wceq | |- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |