Description: Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-prrngo | |- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cprrng | |- PrRing |
|
1 | vr | |- r |
|
2 | crngo | |- RingOps |
|
3 | cgi | |- GId |
|
4 | c1st | |- 1st |
|
5 | 1 | cv | |- r |
6 | 5 4 | cfv | |- ( 1st ` r ) |
7 | 6 3 | cfv | |- ( GId ` ( 1st ` r ) ) |
8 | 7 | csn | |- { ( GId ` ( 1st ` r ) ) } |
9 | cpridl | |- PrIdl |
|
10 | 5 9 | cfv | |- ( PrIdl ` r ) |
11 | 8 10 | wcel | |- { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) |
12 | 11 1 2 | crab | |- { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |
13 | 0 12 | wceq | |- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) } |