Metamath Proof Explorer


Definition df-prrngo

Description: Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-prrngo
|- PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprrng
 |-  PrRing
1 vr
 |-  r
2 crngo
 |-  RingOps
3 cgi
 |-  GId
4 c1st
 |-  1st
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( 1st ` r )
7 6 3 cfv
 |-  ( GId ` ( 1st ` r ) )
8 7 csn
 |-  { ( GId ` ( 1st ` r ) ) }
9 cpridl
 |-  PrIdl
10 5 9 cfv
 |-  ( PrIdl ` r )
11 8 10 wcel
 |-  { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r )
12 11 1 2 crab
 |-  { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) }
13 0 12 wceq
 |-  PrRing = { r e. RingOps | { ( GId ` ( 1st ` r ) ) } e. ( PrIdl ` r ) }