Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dmn | |- Dmn = ( PrRing i^i Com2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdmn | |- Dmn |
|
| 1 | cprrng | |- PrRing |
|
| 2 | ccm2 | |- Com2 |
|
| 3 | 1 2 | cin | |- ( PrRing i^i Com2 ) |
| 4 | 0 3 | wceq | |- Dmn = ( PrRing i^i Com2 ) |