Metamath Proof Explorer


Definition df-dmn

Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-dmn
|- Dmn = ( PrRing i^i Com2 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmn
 |-  Dmn
1 cprrng
 |-  PrRing
2 ccm2
 |-  Com2
3 1 2 cin
 |-  ( PrRing i^i Com2 )
4 0 3 wceq
 |-  Dmn = ( PrRing i^i Com2 )