Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dmn | ⊢ Dmn = ( PrRing ∩ Com2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdmn | ⊢ Dmn | |
| 1 | cprrng | ⊢ PrRing | |
| 2 | ccm2 | ⊢ Com2 | |
| 3 | 1 2 | cin | ⊢ ( PrRing ∩ Com2 ) |
| 4 | 0 3 | wceq | ⊢ Dmn = ( PrRing ∩ Com2 ) |