Metamath Proof Explorer


Definition df-dmn

Description: Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-dmn Dmn = ( PrRing ∩ Com2 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmn Dmn
1 cprrng PrRing
2 ccm2 Com2
3 1 2 cin ( PrRing ∩ Com2 )
4 0 3 wceq Dmn = ( PrRing ∩ Com2 )