Metamath Proof Explorer


Definition df-prrngo

Description: Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-prrngo PrRing = { 𝑟 ∈ RingOps ∣ { ( GId ‘ ( 1st𝑟 ) ) } ∈ ( PrIdl ‘ 𝑟 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprrng PrRing
1 vr 𝑟
2 crngo RingOps
3 cgi GId
4 c1st 1st
5 1 cv 𝑟
6 5 4 cfv ( 1st𝑟 )
7 6 3 cfv ( GId ‘ ( 1st𝑟 ) )
8 7 csn { ( GId ‘ ( 1st𝑟 ) ) }
9 cpridl PrIdl
10 5 9 cfv ( PrIdl ‘ 𝑟 )
11 8 10 wcel { ( GId ‘ ( 1st𝑟 ) ) } ∈ ( PrIdl ‘ 𝑟 )
12 11 1 2 crab { 𝑟 ∈ RingOps ∣ { ( GId ‘ ( 1st𝑟 ) ) } ∈ ( PrIdl ‘ 𝑟 ) }
13 0 12 wceq PrRing = { 𝑟 ∈ RingOps ∣ { ( GId ‘ ( 1st𝑟 ) ) } ∈ ( PrIdl ‘ 𝑟 ) }