Metamath Proof Explorer


Theorem prrngorngo

Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion prrngorngo ( 𝑅 ∈ PrRing → 𝑅 ∈ RingOps )

Proof

Step Hyp Ref Expression
1 eqid ( 1st𝑅 ) = ( 1st𝑅 )
2 eqid ( GId ‘ ( 1st𝑅 ) ) = ( GId ‘ ( 1st𝑅 ) )
3 1 2 isprrngo ( 𝑅 ∈ PrRing ↔ ( 𝑅 ∈ RingOps ∧ { ( GId ‘ ( 1st𝑅 ) ) } ∈ ( PrIdl ‘ 𝑅 ) ) )
4 3 simplbi ( 𝑅 ∈ PrRing → 𝑅 ∈ RingOps )