| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smprngpr.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
smprngpr.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
smprngpr.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
smprngpr.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
smprngpr.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → 𝑅 ∈ RingOps ) |
| 7 |
1 4
|
0idl |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |
| 9 |
1 2 3 4 5
|
0rngo |
⊢ ( 𝑅 ∈ RingOps → ( 𝑍 = 𝑈 ↔ 𝑋 = { 𝑍 } ) ) |
| 10 |
|
eqcom |
⊢ ( 𝑈 = 𝑍 ↔ 𝑍 = 𝑈 ) |
| 11 |
|
eqcom |
⊢ ( { 𝑍 } = 𝑋 ↔ 𝑋 = { 𝑍 } ) |
| 12 |
9 10 11
|
3bitr4g |
⊢ ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 ↔ { 𝑍 } = 𝑋 ) ) |
| 13 |
12
|
necon3bid |
⊢ ( 𝑅 ∈ RingOps → ( 𝑈 ≠ 𝑍 ↔ { 𝑍 } ≠ 𝑋 ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → { 𝑍 } ≠ 𝑋 ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → { 𝑍 } ≠ 𝑋 ) |
| 16 |
|
df-pr |
⊢ { { 𝑍 } , 𝑋 } = ( { { 𝑍 } } ∪ { 𝑋 } ) |
| 17 |
16
|
eqeq2i |
⊢ ( ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ↔ ( Idl ‘ 𝑅 ) = ( { { 𝑍 } } ∪ { 𝑋 } ) ) |
| 18 |
|
eleq2 |
⊢ ( ( Idl ‘ 𝑅 ) = ( { { 𝑍 } } ∪ { 𝑋 } ) → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ↔ 𝑖 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ) ) |
| 19 |
|
eleq2 |
⊢ ( ( Idl ‘ 𝑅 ) = ( { { 𝑍 } } ∪ { 𝑋 } ) → ( 𝑗 ∈ ( Idl ‘ 𝑅 ) ↔ 𝑗 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ) ) |
| 20 |
18 19
|
anbi12d |
⊢ ( ( Idl ‘ 𝑅 ) = ( { { 𝑍 } } ∪ { 𝑋 } ) → ( ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ↔ ( 𝑖 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ∧ 𝑗 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ) ) ) |
| 21 |
|
elun |
⊢ ( 𝑖 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ↔ ( 𝑖 ∈ { { 𝑍 } } ∨ 𝑖 ∈ { 𝑋 } ) ) |
| 22 |
|
velsn |
⊢ ( 𝑖 ∈ { { 𝑍 } } ↔ 𝑖 = { 𝑍 } ) |
| 23 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑋 } ↔ 𝑖 = 𝑋 ) |
| 24 |
22 23
|
orbi12i |
⊢ ( ( 𝑖 ∈ { { 𝑍 } } ∨ 𝑖 ∈ { 𝑋 } ) ↔ ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) |
| 25 |
21 24
|
bitri |
⊢ ( 𝑖 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ↔ ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) |
| 26 |
|
elun |
⊢ ( 𝑗 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ↔ ( 𝑗 ∈ { { 𝑍 } } ∨ 𝑗 ∈ { 𝑋 } ) ) |
| 27 |
|
velsn |
⊢ ( 𝑗 ∈ { { 𝑍 } } ↔ 𝑗 = { 𝑍 } ) |
| 28 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑋 } ↔ 𝑗 = 𝑋 ) |
| 29 |
27 28
|
orbi12i |
⊢ ( ( 𝑗 ∈ { { 𝑍 } } ∨ 𝑗 ∈ { 𝑋 } ) ↔ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) |
| 30 |
26 29
|
bitri |
⊢ ( 𝑗 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ↔ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) |
| 31 |
25 30
|
anbi12i |
⊢ ( ( 𝑖 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ∧ 𝑗 ∈ ( { { 𝑍 } } ∪ { 𝑋 } ) ) ↔ ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) ) |
| 32 |
20 31
|
bitrdi |
⊢ ( ( Idl ‘ 𝑅 ) = ( { { 𝑍 } } ∪ { 𝑋 } ) → ( ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ↔ ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) ) ) |
| 33 |
17 32
|
sylbi |
⊢ ( ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } → ( ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ↔ ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) ) ) |
| 34 |
33
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → ( ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ↔ ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) ) ) |
| 35 |
|
eqimss |
⊢ ( 𝑖 = { 𝑍 } → 𝑖 ⊆ { 𝑍 } ) |
| 36 |
35
|
orcd |
⊢ ( 𝑖 = { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = { 𝑍 } ) → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) |
| 38 |
37
|
a1d |
⊢ ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = { 𝑍 } ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) |
| 39 |
38
|
a1i |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = { 𝑍 } ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 40 |
|
eqimss |
⊢ ( 𝑗 = { 𝑍 } → 𝑗 ⊆ { 𝑍 } ) |
| 41 |
40
|
olcd |
⊢ ( 𝑗 = { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑖 = 𝑋 ∧ 𝑗 = { 𝑍 } ) → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) |
| 43 |
42
|
a1d |
⊢ ( ( 𝑖 = 𝑋 ∧ 𝑗 = { 𝑍 } ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) |
| 44 |
43
|
a1i |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ( 𝑖 = 𝑋 ∧ 𝑗 = { 𝑍 } ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 45 |
36
|
adantr |
⊢ ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = 𝑋 ) → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) |
| 46 |
45
|
a1d |
⊢ ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = 𝑋 ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) |
| 47 |
46
|
a1i |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ( 𝑖 = { 𝑍 } ∧ 𝑗 = 𝑋 ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 48 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 49 |
3 48
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 50 |
49 2 5
|
rngo1cl |
⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → 𝑈 ∈ 𝑋 ) |
| 52 |
2 49 5
|
rngolidm |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑈 ) = 𝑈 ) |
| 53 |
50 52
|
mpdan |
⊢ ( 𝑅 ∈ RingOps → ( 𝑈 𝐻 𝑈 ) = 𝑈 ) |
| 54 |
53
|
eleq1d |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ↔ 𝑈 ∈ { 𝑍 } ) ) |
| 55 |
5
|
fvexi |
⊢ 𝑈 ∈ V |
| 56 |
55
|
elsn |
⊢ ( 𝑈 ∈ { 𝑍 } ↔ 𝑈 = 𝑍 ) |
| 57 |
54 56
|
bitrdi |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ↔ 𝑈 = 𝑍 ) ) |
| 58 |
57
|
necon3bbid |
⊢ ( 𝑅 ∈ RingOps → ( ¬ ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ↔ 𝑈 ≠ 𝑍 ) ) |
| 59 |
58
|
biimpar |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ¬ ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ) |
| 60 |
|
oveq1 |
⊢ ( 𝑥 = 𝑈 → ( 𝑥 𝐻 𝑦 ) = ( 𝑈 𝐻 𝑦 ) ) |
| 61 |
60
|
eleq1d |
⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑈 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 62 |
61
|
notbid |
⊢ ( 𝑥 = 𝑈 → ( ¬ ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ¬ ( 𝑈 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 63 |
|
oveq2 |
⊢ ( 𝑦 = 𝑈 → ( 𝑈 𝐻 𝑦 ) = ( 𝑈 𝐻 𝑈 ) ) |
| 64 |
63
|
eleq1d |
⊢ ( 𝑦 = 𝑈 → ( ( 𝑈 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ) ) |
| 65 |
64
|
notbid |
⊢ ( 𝑦 = 𝑈 → ( ¬ ( 𝑈 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ¬ ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ) ) |
| 66 |
62 65
|
rspc2ev |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ∧ ¬ ( 𝑈 𝐻 𝑈 ) ∈ { 𝑍 } ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) |
| 67 |
51 51 59 66
|
syl3anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) |
| 68 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) |
| 69 |
67 68
|
sylib |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) |
| 70 |
69
|
pm2.21d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) |
| 71 |
|
raleq |
⊢ ( 𝑖 = 𝑋 → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 72 |
|
raleq |
⊢ ( 𝑗 = 𝑋 → ( ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 73 |
72
|
ralbidv |
⊢ ( 𝑗 = 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 74 |
71 73
|
sylan9bb |
⊢ ( ( 𝑖 = 𝑋 ∧ 𝑗 = 𝑋 ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } ) ) |
| 75 |
74
|
imbi1d |
⊢ ( ( 𝑖 = 𝑋 ∧ 𝑗 = 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 76 |
70 75
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ( 𝑖 = 𝑋 ∧ 𝑗 = 𝑋 ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 77 |
39 44 47 76
|
ccased |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 78 |
77
|
3adant3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → ( ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ∧ ( 𝑗 = { 𝑍 } ∨ 𝑗 = 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 79 |
34 78
|
sylbid |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → ( ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) |
| 80 |
79
|
ralrimivv |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → ∀ 𝑖 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) |
| 81 |
1 2 3
|
ispridl |
⊢ ( 𝑅 ∈ RingOps → ( { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ↔ ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑖 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) ) |
| 82 |
81
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → ( { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ↔ ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑖 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑖 ∀ 𝑦 ∈ 𝑗 ( 𝑥 𝐻 𝑦 ) ∈ { 𝑍 } → ( 𝑖 ⊆ { 𝑍 } ∨ 𝑗 ⊆ { 𝑍 } ) ) ) ) ) |
| 83 |
8 15 80 82
|
mpbir3and |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ) |
| 84 |
1 4
|
isprrngo |
⊢ ( 𝑅 ∈ PrRing ↔ ( 𝑅 ∈ RingOps ∧ { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ) ) |
| 85 |
6 83 84
|
sylanbrc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) → 𝑅 ∈ PrRing ) |