| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smprngpr.1 |
|
| 2 |
|
smprngpr.2 |
|
| 3 |
|
smprngpr.3 |
|
| 4 |
|
smprngpr.4 |
|
| 5 |
|
smprngpr.5 |
|
| 6 |
|
simp1 |
|
| 7 |
1 4
|
0idl |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
1 2 3 4 5
|
0rngo |
|
| 10 |
|
eqcom |
|
| 11 |
|
eqcom |
|
| 12 |
9 10 11
|
3bitr4g |
|
| 13 |
12
|
necon3bid |
|
| 14 |
13
|
biimpa |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
df-pr |
|
| 17 |
16
|
eqeq2i |
|
| 18 |
|
eleq2 |
|
| 19 |
|
eleq2 |
|
| 20 |
18 19
|
anbi12d |
|
| 21 |
|
elun |
|
| 22 |
|
velsn |
|
| 23 |
|
velsn |
|
| 24 |
22 23
|
orbi12i |
|
| 25 |
21 24
|
bitri |
|
| 26 |
|
elun |
|
| 27 |
|
velsn |
|
| 28 |
|
velsn |
|
| 29 |
27 28
|
orbi12i |
|
| 30 |
26 29
|
bitri |
|
| 31 |
25 30
|
anbi12i |
|
| 32 |
20 31
|
bitrdi |
|
| 33 |
17 32
|
sylbi |
|
| 34 |
33
|
3ad2ant3 |
|
| 35 |
|
eqimss |
|
| 36 |
35
|
orcd |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
a1d |
|
| 39 |
38
|
a1i |
|
| 40 |
|
eqimss |
|
| 41 |
40
|
olcd |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
a1d |
|
| 44 |
43
|
a1i |
|
| 45 |
36
|
adantr |
|
| 46 |
45
|
a1d |
|
| 47 |
46
|
a1i |
|
| 48 |
1
|
rneqi |
|
| 49 |
3 48
|
eqtri |
|
| 50 |
49 2 5
|
rngo1cl |
|
| 51 |
50
|
adantr |
|
| 52 |
2 49 5
|
rngolidm |
|
| 53 |
50 52
|
mpdan |
|
| 54 |
53
|
eleq1d |
|
| 55 |
5
|
fvexi |
|
| 56 |
55
|
elsn |
|
| 57 |
54 56
|
bitrdi |
|
| 58 |
57
|
necon3bbid |
|
| 59 |
58
|
biimpar |
|
| 60 |
|
oveq1 |
|
| 61 |
60
|
eleq1d |
|
| 62 |
61
|
notbid |
|
| 63 |
|
oveq2 |
|
| 64 |
63
|
eleq1d |
|
| 65 |
64
|
notbid |
|
| 66 |
62 65
|
rspc2ev |
|
| 67 |
51 51 59 66
|
syl3anc |
|
| 68 |
|
rexnal2 |
|
| 69 |
67 68
|
sylib |
|
| 70 |
69
|
pm2.21d |
|
| 71 |
|
raleq |
|
| 72 |
|
raleq |
|
| 73 |
72
|
ralbidv |
|
| 74 |
71 73
|
sylan9bb |
|
| 75 |
74
|
imbi1d |
|
| 76 |
70 75
|
syl5ibrcom |
|
| 77 |
39 44 47 76
|
ccased |
|
| 78 |
77
|
3adant3 |
|
| 79 |
34 78
|
sylbid |
|
| 80 |
79
|
ralrimivv |
|
| 81 |
1 2 3
|
ispridl |
|
| 82 |
81
|
3ad2ant1 |
|
| 83 |
8 15 80 82
|
mpbir3and |
|
| 84 |
1 4
|
isprrngo |
|
| 85 |
6 83 84
|
sylanbrc |
|