Metamath Proof Explorer


Theorem ispridl

Description: The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses pridlval.1 G=1stR
pridlval.2 H=2ndR
pridlval.3 X=ranG
Assertion ispridl RRingOpsPPrIdlRPIdlRPXaIdlRbIdlRxaybxHyPaPbP

Proof

Step Hyp Ref Expression
1 pridlval.1 G=1stR
2 pridlval.2 H=2ndR
3 pridlval.3 X=ranG
4 1 2 3 pridlval RRingOpsPrIdlR=iIdlR|iXaIdlRbIdlRxaybxHyiaibi
5 4 eleq2d RRingOpsPPrIdlRPiIdlR|iXaIdlRbIdlRxaybxHyiaibi
6 neeq1 i=PiXPX
7 eleq2 i=PxHyixHyP
8 7 2ralbidv i=PxaybxHyixaybxHyP
9 sseq2 i=PaiaP
10 sseq2 i=PbibP
11 9 10 orbi12d i=PaibiaPbP
12 8 11 imbi12d i=PxaybxHyiaibixaybxHyPaPbP
13 12 2ralbidv i=PaIdlRbIdlRxaybxHyiaibiaIdlRbIdlRxaybxHyPaPbP
14 6 13 anbi12d i=PiXaIdlRbIdlRxaybxHyiaibiPXaIdlRbIdlRxaybxHyPaPbP
15 14 elrab PiIdlR|iXaIdlRbIdlRxaybxHyiaibiPIdlRPXaIdlRbIdlRxaybxHyPaPbP
16 3anass PIdlRPXaIdlRbIdlRxaybxHyPaPbPPIdlRPXaIdlRbIdlRxaybxHyPaPbP
17 15 16 bitr4i PiIdlR|iXaIdlRbIdlRxaybxHyiaibiPIdlRPXaIdlRbIdlRxaybxHyPaPbP
18 5 17 bitrdi RRingOpsPPrIdlRPIdlRPXaIdlRbIdlRxaybxHyPaPbP