Step |
Hyp |
Ref |
Expression |
1 |
|
pridlval.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
pridlval.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
pridlval.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
pridlval |
⊢ ( 𝑅 ∈ RingOps → ( PrIdl ‘ 𝑅 ) = { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) ) |
6 |
|
neeq1 |
⊢ ( 𝑖 = 𝑃 → ( 𝑖 ≠ 𝑋 ↔ 𝑃 ≠ 𝑋 ) ) |
7 |
|
eleq2 |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 ) ) |
8 |
7
|
2ralbidv |
⊢ ( 𝑖 = 𝑃 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 ) ) |
9 |
|
sseq2 |
⊢ ( 𝑖 = 𝑃 → ( 𝑎 ⊆ 𝑖 ↔ 𝑎 ⊆ 𝑃 ) ) |
10 |
|
sseq2 |
⊢ ( 𝑖 = 𝑃 → ( 𝑏 ⊆ 𝑖 ↔ 𝑏 ⊆ 𝑃 ) ) |
11 |
9 10
|
orbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ↔ ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) |
12 |
8 11
|
imbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑖 = 𝑃 → ( ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
14 |
6 13
|
anbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ↔ ( 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
15 |
14
|
elrab |
⊢ ( 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
18 |
5 17
|
bitrdi |
⊢ ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |