Metamath Proof Explorer


Theorem ispridl

Description: The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses pridlval.1 𝐺 = ( 1st𝑅 )
pridlval.2 𝐻 = ( 2nd𝑅 )
pridlval.3 𝑋 = ran 𝐺
Assertion ispridl ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pridlval.1 𝐺 = ( 1st𝑅 )
2 pridlval.2 𝐻 = ( 2nd𝑅 )
3 pridlval.3 𝑋 = ran 𝐺
4 1 2 3 pridlval ( 𝑅 ∈ RingOps → ( PrIdl ‘ 𝑅 ) = { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )
5 4 eleq2d ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } ) )
6 neeq1 ( 𝑖 = 𝑃 → ( 𝑖𝑋𝑃𝑋 ) )
7 eleq2 ( 𝑖 = 𝑃 → ( ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 ) )
8 7 2ralbidv ( 𝑖 = 𝑃 → ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 ) )
9 sseq2 ( 𝑖 = 𝑃 → ( 𝑎𝑖𝑎𝑃 ) )
10 sseq2 ( 𝑖 = 𝑃 → ( 𝑏𝑖𝑏𝑃 ) )
11 9 10 orbi12d ( 𝑖 = 𝑃 → ( ( 𝑎𝑖𝑏𝑖 ) ↔ ( 𝑎𝑃𝑏𝑃 ) ) )
12 8 11 imbi12d ( 𝑖 = 𝑃 → ( ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ↔ ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) )
13 12 2ralbidv ( 𝑖 = 𝑃 → ( ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ↔ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) )
14 6 13 anbi12d ( 𝑖 = 𝑃 → ( ( 𝑖𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) ↔ ( 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )
15 14 elrab ( 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )
16 3anass ( ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )
17 15 16 bitr4i ( 𝑃 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) )
18 5 17 bitrdi ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃𝑋 ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 𝐻 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )