Metamath Proof Explorer


Theorem pridlidl

Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Assertion pridlidl ( ( 𝑅 ∈ RingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → 𝑃 ∈ ( Idl ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 1st𝑅 ) = ( 1st𝑅 )
2 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
3 eqid ran ( 1st𝑅 ) = ran ( 1st𝑅 )
4 1 2 3 ispridl ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ ran ( 1st𝑅 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )
5 3anass ( ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ ran ( 1st𝑅 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃 ≠ ran ( 1st𝑅 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) )
6 4 5 bitrdi ( 𝑅 ∈ RingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑃 ≠ ran ( 1st𝑅 ) ∧ ∀ 𝑎 ∈ ( Idl ‘ 𝑅 ) ∀ 𝑏 ∈ ( Idl ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( 2nd𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎𝑃𝑏𝑃 ) ) ) ) ) )
7 6 simprbda ( ( 𝑅 ∈ RingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → 𝑃 ∈ ( Idl ‘ 𝑅 ) )