Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
2 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
3 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
4 |
1 2 3
|
ispridl |
|- ( R e. RingOps -> ( P e. ( PrIdl ` R ) <-> ( P e. ( Idl ` R ) /\ P =/= ran ( 1st ` R ) /\ A. a e. ( Idl ` R ) A. b e. ( Idl ` R ) ( A. x e. a A. y e. b ( x ( 2nd ` R ) y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) |
5 |
|
3anass |
|- ( ( P e. ( Idl ` R ) /\ P =/= ran ( 1st ` R ) /\ A. a e. ( Idl ` R ) A. b e. ( Idl ` R ) ( A. x e. a A. y e. b ( x ( 2nd ` R ) y ) e. P -> ( a C_ P \/ b C_ P ) ) ) <-> ( P e. ( Idl ` R ) /\ ( P =/= ran ( 1st ` R ) /\ A. a e. ( Idl ` R ) A. b e. ( Idl ` R ) ( A. x e. a A. y e. b ( x ( 2nd ` R ) y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) |
6 |
4 5
|
bitrdi |
|- ( R e. RingOps -> ( P e. ( PrIdl ` R ) <-> ( P e. ( Idl ` R ) /\ ( P =/= ran ( 1st ` R ) /\ A. a e. ( Idl ` R ) A. b e. ( Idl ` R ) ( A. x e. a A. y e. b ( x ( 2nd ` R ) y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) ) |
7 |
6
|
simprbda |
|- ( ( R e. RingOps /\ P e. ( PrIdl ` R ) ) -> P e. ( Idl ` R ) ) |