Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
pridlidl
Next ⟩
pridlnr
Metamath Proof Explorer
Ascii
Unicode
Theorem
pridlidl
Description:
A prime ideal is an ideal.
(Contributed by
Jeff Madsen
, 19-Jun-2010)
Ref
Expression
Assertion
pridlidl
⊢
R
∈
RingOps
∧
P
∈
PrIdl
⁡
R
→
P
∈
Idl
⁡
R
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
1
st
⁡
R
=
1
st
⁡
R
2
eqid
⊢
2
nd
⁡
R
=
2
nd
⁡
R
3
eqid
⊢
ran
⁡
1
st
⁡
R
=
ran
⁡
1
st
⁡
R
4
1
2
3
ispridl
⊢
R
∈
RingOps
→
P
∈
PrIdl
⁡
R
↔
P
∈
Idl
⁡
R
∧
P
≠
ran
⁡
1
st
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
5
3anass
⊢
P
∈
Idl
⁡
R
∧
P
≠
ran
⁡
1
st
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
↔
P
∈
Idl
⁡
R
∧
P
≠
ran
⁡
1
st
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
6
4
5
bitrdi
⊢
R
∈
RingOps
→
P
∈
PrIdl
⁡
R
↔
P
∈
Idl
⁡
R
∧
P
≠
ran
⁡
1
st
⁡
R
∧
∀
a
∈
Idl
⁡
R
∀
b
∈
Idl
⁡
R
∀
x
∈
a
∀
y
∈
b
x
2
nd
⁡
R
y
∈
P
→
a
⊆
P
∨
b
⊆
P
7
6
simprbda
⊢
R
∈
RingOps
∧
P
∈
PrIdl
⁡
R
→
P
∈
Idl
⁡
R