Metamath Proof Explorer


Theorem pridlnr

Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses pridlnr.1 G = 1 st R
prdilnr.2 X = ran G
Assertion pridlnr R RingOps P PrIdl R P X

Proof

Step Hyp Ref Expression
1 pridlnr.1 G = 1 st R
2 prdilnr.2 X = ran G
3 eqid 2 nd R = 2 nd R
4 1 3 2 ispridl R RingOps P PrIdl R P Idl R P X a Idl R b Idl R x a y b x 2 nd R y P a P b P
5 3anan12 P Idl R P X a Idl R b Idl R x a y b x 2 nd R y P a P b P P X P Idl R a Idl R b Idl R x a y b x 2 nd R y P a P b P
6 4 5 bitrdi R RingOps P PrIdl R P X P Idl R a Idl R b Idl R x a y b x 2 nd R y P a P b P
7 6 simprbda R RingOps P PrIdl R P X