Metamath Proof Explorer


Theorem divrngpr

Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion divrngpr R DivRingOps R PrRing

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid 2 nd R = 2 nd R
3 eqid GId 1 st R = GId 1 st R
4 eqid ran 1 st R = ran 1 st R
5 1 2 3 4 isdrngo1 R DivRingOps R RingOps 2 nd R ran 1 st R GId 1 st R × ran 1 st R GId 1 st R GrpOp
6 5 simplbi R DivRingOps R RingOps
7 eqid GId 2 nd R = GId 2 nd R
8 1 2 4 3 7 dvrunz R DivRingOps GId 2 nd R GId 1 st R
9 1 2 4 3 divrngidl R DivRingOps Idl R = GId 1 st R ran 1 st R
10 1 2 4 3 7 smprngopr R RingOps GId 2 nd R GId 1 st R Idl R = GId 1 st R ran 1 st R R PrRing
11 6 8 9 10 syl3anc R DivRingOps R PrRing