Metamath Proof Explorer


Theorem dvrunz

Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dvrunz.1 G=1stR
dvrunz.2 H=2ndR
dvrunz.3 X=ranG
dvrunz.4 Z=GIdG
dvrunz.5 U=GIdH
Assertion dvrunz RDivRingOpsUZ

Proof

Step Hyp Ref Expression
1 dvrunz.1 G=1stR
2 dvrunz.2 H=2ndR
3 dvrunz.3 X=ranG
4 dvrunz.4 Z=GIdG
5 dvrunz.5 U=GIdH
6 4 fvexi ZV
7 6 zrdivrng ¬ZZZZZZDivRingOps
8 1 2 3 4 drngoi RDivRingOpsRRingOpsHXZ×XZGrpOp
9 8 simpld RDivRingOpsRRingOps
10 1 2 4 5 3 rngoueqz RRingOpsX1𝑜U=Z
11 9 10 syl RDivRingOpsX1𝑜U=Z
12 1 3 4 rngosn6 RRingOpsX1𝑜R=ZZZZZZ
13 9 12 syl RDivRingOpsX1𝑜R=ZZZZZZ
14 eleq1 R=ZZZZZZRDivRingOpsZZZZZZDivRingOps
15 14 biimpd R=ZZZZZZRDivRingOpsZZZZZZDivRingOps
16 13 15 syl6bi RDivRingOpsX1𝑜RDivRingOpsZZZZZZDivRingOps
17 16 pm2.43a RDivRingOpsX1𝑜ZZZZZZDivRingOps
18 11 17 sylbird RDivRingOpsU=ZZZZZZZDivRingOps
19 18 necon3bd RDivRingOps¬ZZZZZZDivRingOpsUZ
20 7 19 mpi RDivRingOpsUZ