Metamath Proof Explorer


Theorem isgrpda

Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009) (New usage is discouraged.)

Ref Expression
Hypotheses isgrpda.1 φXV
isgrpda.2 φG:X×XX
isgrpda.3 φxXyXzXxGyGz=xGyGz
isgrpda.4 φUX
isgrpda.5 φxXUGx=x
isgrpda.6 φxXnXnGx=U
Assertion isgrpda φGGrpOp

Proof

Step Hyp Ref Expression
1 isgrpda.1 φXV
2 isgrpda.2 φG:X×XX
3 isgrpda.3 φxXyXzXxGyGz=xGyGz
4 isgrpda.4 φUX
5 isgrpda.5 φxXUGx=x
6 isgrpda.6 φxXnXnGx=U
7 3 ralrimivvva φxXyXzXxGyGz=xGyGz
8 oveq1 y=nyGx=nGx
9 8 eqeq1d y=nyGx=UnGx=U
10 9 cbvrexvw yXyGx=UnXnGx=U
11 6 10 sylibr φxXyXyGx=U
12 5 11 jca φxXUGx=xyXyGx=U
13 12 ralrimiva φxXUGx=xyXyGx=U
14 oveq1 u=UuGx=UGx
15 14 eqeq1d u=UuGx=xUGx=x
16 eqeq2 u=UyGx=uyGx=U
17 16 rexbidv u=UyXyGx=uyXyGx=U
18 15 17 anbi12d u=UuGx=xyXyGx=uUGx=xyXyGx=U
19 18 ralbidv u=UxXuGx=xyXyGx=uxXUGx=xyXyGx=U
20 19 rspcev UXxXUGx=xyXyGx=UuXxXuGx=xyXyGx=u
21 4 13 20 syl2anc φuXxXuGx=xyXyGx=u
22 4 adantr φxXUX
23 simpr φxXxX
24 5 eqcomd φxXx=UGx
25 rspceov UXxXx=UGxyXzXx=yGz
26 22 23 24 25 syl3anc φxXyXzXx=yGz
27 26 ralrimiva φxXyXzXx=yGz
28 foov G:X×XontoXG:X×XXxXyXzXx=yGz
29 2 27 28 sylanbrc φG:X×XontoX
30 forn G:X×XontoXranG=X
31 29 30 syl φranG=X
32 31 sqxpeqd φranG×ranG=X×X
33 32 31 feq23d φG:ranG×ranGranGG:X×XX
34 31 raleqdv φzranGxGyGz=xGyGzzXxGyGz=xGyGz
35 31 34 raleqbidv φyranGzranGxGyGz=xGyGzyXzXxGyGz=xGyGz
36 31 35 raleqbidv φxranGyranGzranGxGyGz=xGyGzxXyXzXxGyGz=xGyGz
37 31 rexeqdv φyranGyGx=uyXyGx=u
38 37 anbi2d φuGx=xyranGyGx=uuGx=xyXyGx=u
39 31 38 raleqbidv φxranGuGx=xyranGyGx=uxXuGx=xyXyGx=u
40 31 39 rexeqbidv φuranGxranGuGx=xyranGyGx=uuXxXuGx=xyXyGx=u
41 33 36 40 3anbi123d φG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzuranGxranGuGx=xyranGyGx=uG:X×XXxXyXzXxGyGz=xGyGzuXxXuGx=xyXyGx=u
42 2 7 21 41 mpbir3and φG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzuranGxranGuGx=xyranGyGx=u
43 1 1 xpexd φX×XV
44 2 43 fexd φGV
45 eqid ranG=ranG
46 45 isgrpo GVGGrpOpG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzuranGxranGuGx=xyranGyGx=u
47 44 46 syl φGGrpOpG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzuranGxranGuGx=xyranGyGx=u
48 42 47 mpbird φGGrpOp