Metamath Proof Explorer


Theorem zrdivrng

Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis zrdivrng.1 A V
Assertion zrdivrng ¬ A A A A A A DivRingOps

Proof

Step Hyp Ref Expression
1 zrdivrng.1 A V
2 0ngrp ¬ GrpOp
3 opex A A V
4 3 rnsnop ran A A A = A
5 1 gidsn GId A A A = A
6 5 sneqi GId A A A = A
7 4 6 difeq12i ran A A A GId A A A = A A
8 difid A A =
9 7 8 eqtri ran A A A GId A A A =
10 9 xpeq2i ran A A A GId A A A × ran A A A GId A A A = ran A A A GId A A A ×
11 xp0 ran A A A GId A A A × =
12 10 11 eqtri ran A A A GId A A A × ran A A A GId A A A =
13 12 reseq2i A A A ran A A A GId A A A × ran A A A GId A A A = A A A
14 res0 A A A =
15 13 14 eqtri A A A ran A A A GId A A A × ran A A A GId A A A =
16 snex A A A V
17 isdivrngo A A A V A A A A A A DivRingOps A A A A A A RingOps A A A ran A A A GId A A A × ran A A A GId A A A GrpOp
18 16 17 ax-mp A A A A A A DivRingOps A A A A A A RingOps A A A ran A A A GId A A A × ran A A A GId A A A GrpOp
19 18 simprbi A A A A A A DivRingOps A A A ran A A A GId A A A × ran A A A GId A A A GrpOp
20 15 19 eqeltrrid A A A A A A DivRingOps GrpOp
21 2 20 mto ¬ A A A A A A DivRingOps