Metamath Proof Explorer


Theorem divrngpr

Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion divrngpr ( 𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing )

Proof

Step Hyp Ref Expression
1 eqid ( 1st𝑅 ) = ( 1st𝑅 )
2 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
3 eqid ( GId ‘ ( 1st𝑅 ) ) = ( GId ‘ ( 1st𝑅 ) )
4 eqid ran ( 1st𝑅 ) = ran ( 1st𝑅 )
5 1 2 3 4 isdrngo1 ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( ( 2nd𝑅 ) ↾ ( ( ran ( 1st𝑅 ) ∖ { ( GId ‘ ( 1st𝑅 ) ) } ) × ( ran ( 1st𝑅 ) ∖ { ( GId ‘ ( 1st𝑅 ) ) } ) ) ) ∈ GrpOp ) )
6 5 simplbi ( 𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps )
7 eqid ( GId ‘ ( 2nd𝑅 ) ) = ( GId ‘ ( 2nd𝑅 ) )
8 1 2 4 3 7 dvrunz ( 𝑅 ∈ DivRingOps → ( GId ‘ ( 2nd𝑅 ) ) ≠ ( GId ‘ ( 1st𝑅 ) ) )
9 1 2 4 3 divrngidl ( 𝑅 ∈ DivRingOps → ( Idl ‘ 𝑅 ) = { { ( GId ‘ ( 1st𝑅 ) ) } , ran ( 1st𝑅 ) } )
10 1 2 4 3 7 smprngopr ( ( 𝑅 ∈ RingOps ∧ ( GId ‘ ( 2nd𝑅 ) ) ≠ ( GId ‘ ( 1st𝑅 ) ) ∧ ( Idl ‘ 𝑅 ) = { { ( GId ‘ ( 1st𝑅 ) ) } , ran ( 1st𝑅 ) } ) → 𝑅 ∈ PrRing )
11 6 8 9 10 syl3anc ( 𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing )