| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flddivrng |
|- ( K e. Fld -> K e. DivRingOps ) |
| 2 |
|
fldcrngo |
|- ( K e. Fld -> K e. CRingOps ) |
| 3 |
1 2
|
jca |
|- ( K e. Fld -> ( K e. DivRingOps /\ K e. CRingOps ) ) |
| 4 |
|
iscrngo |
|- ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) ) |
| 5 |
4
|
simprbi |
|- ( K e. CRingOps -> K e. Com2 ) |
| 6 |
|
elin |
|- ( K e. ( DivRingOps i^i Com2 ) <-> ( K e. DivRingOps /\ K e. Com2 ) ) |
| 7 |
6
|
biimpri |
|- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. ( DivRingOps i^i Com2 ) ) |
| 8 |
|
df-fld |
|- Fld = ( DivRingOps i^i Com2 ) |
| 9 |
7 8
|
eleqtrrdi |
|- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. Fld ) |
| 10 |
5 9
|
sylan2 |
|- ( ( K e. DivRingOps /\ K e. CRingOps ) -> K e. Fld ) |
| 11 |
3 10
|
impbii |
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |