Metamath Proof Explorer


Theorem flddmn

Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion flddmn ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn )

Proof

Step Hyp Ref Expression
1 divrngpr ( 𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing )
2 1 anim1i ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) → ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) )
3 isfld2 ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) )
4 isdmn2 ( 𝐾 ∈ Dmn ↔ ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) )
5 2 3 4 3imtr4i ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn )