Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flddmn | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrngpr | ⊢ ( 𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) → ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) ) |
| 3 | isfld2 | ⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) | |
| 4 | isdmn2 | ⊢ ( 𝐾 ∈ Dmn ↔ ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) ) | |
| 5 | 2 3 4 | 3imtr4i | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn ) |