Description: A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | flddmn | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrngpr | ⊢ ( 𝐾 ∈ DivRingOps → 𝐾 ∈ PrRing ) | |
2 | 1 | anim1i | ⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) → ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) ) |
3 | isfld2 | ⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) | |
4 | isdmn2 | ⊢ ( 𝐾 ∈ Dmn ↔ ( 𝐾 ∈ PrRing ∧ 𝐾 ∈ CRingOps ) ) | |
5 | 2 3 4 | 3imtr4i | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ Dmn ) |