Metamath Proof Explorer


Theorem dmnrngo

Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmnrngo
|- ( R e. Dmn -> R e. RingOps )

Proof

Step Hyp Ref Expression
1 dmncrng
 |-  ( R e. Dmn -> R e. CRingOps )
2 crngorngo
 |-  ( R e. CRingOps -> R e. RingOps )
3 1 2 syl
 |-  ( R e. Dmn -> R e. RingOps )